|
| 1 | +import numpy as np |
| 2 | +from scipy.optimize import least_squares |
| 3 | +from scipy import constants |
| 4 | +# from numba import jit |
| 5 | + |
| 6 | + |
| 7 | +class Fit: |
| 8 | + variables = [] # fixed ordering |
| 9 | + |
| 10 | + def build(self, data, meta): |
| 11 | + self.data = data |
| 12 | + self.meta = meta |
| 13 | + |
| 14 | + def variables_dict(self, param): |
| 15 | + return dict(zip(self.variables, param)) |
| 16 | + |
| 17 | + def guess(self): |
| 18 | + raise NotImplementedError |
| 19 | + |
| 20 | + def model(self, *param, **kwargs): |
| 21 | + raise NotImplementedError |
| 22 | + |
| 23 | + def fit(self, *param, **kwargs): |
| 24 | + def fun(x, *args, **kwargs): |
| 25 | + return (self.model(x, *args, **kwargs) - self.data).ravel() |
| 26 | + |
| 27 | + try: |
| 28 | + mjac = self.model_jacobian |
| 29 | + |
| 30 | + def jac(x, *args, **kwargs): |
| 31 | + return mjac(x, *args, **kwargs).reshape(-1, x.size) |
| 32 | + except AttributeError: |
| 33 | + jac = "2-point" |
| 34 | + |
| 35 | + res = least_squares(fun, param, jac, **kwargs) |
| 36 | + _, s, v = np.linalg.svd(res.jac, full_matrices=False) |
| 37 | + threshold = np.finfo(float).eps * max(res.jac.shape) * s[0] |
| 38 | + s = s[s > threshold] |
| 39 | + v = v[:s.size] |
| 40 | + pcov = np.dot(v.T/s**2, v) |
| 41 | + return res.x, pcov |
| 42 | + |
| 43 | + def process(self, cov, *param): |
| 44 | + return self.variables_dict(param) |
| 45 | + |
| 46 | + def run(self, data, meta, **kwargs): |
| 47 | + self.build(data, meta) |
| 48 | + param = self.guess() |
| 49 | + param, cov = self.fit(*param, **kwargs) |
| 50 | + results = self.process(cov, *param) |
| 51 | + return param, results |
| 52 | + |
| 53 | + |
| 54 | +def od_to_n(od, meta): |
| 55 | + return (od*meta["pitch_x"]*meta["pitch_x"] * |
| 56 | + (1.+4.*meta["detuning"]**2)/meta["sigma0"]) |
| 57 | + |
| 58 | + |
| 59 | +def area_gauss(p, h, w): |
| 60 | + return 2.*np.pi*p*abs(w*h) |
| 61 | + |
| 62 | + |
| 63 | +def area_parabola(p, h, w): |
| 64 | + return p*2/5.*np.pi/abs(w*h)**.5 |
| 65 | + |
| 66 | + |
| 67 | +def t_gauss(mass, omega, width, tof): |
| 68 | + return mass/constants.Boltzmann*(omega*width)**2/(1. + (tof*omega)**2) |
| 69 | + |
| 70 | + |
| 71 | +class Fit2DGaussParabola(Fit): |
| 72 | + variables = ["i_offset", "x_center", "y_center", |
| 73 | + "a_parabola", "v_parabola", "w_parabola", |
| 74 | + "a_gauss", "v_gauss", "w_gauss"] |
| 75 | + |
| 76 | + def build(self, data, meta): |
| 77 | + super(Fit2DGaussParabola, self).build(data, meta) |
| 78 | + self.xy = np.ogrid[:data.shape[0], :data.shape[1]] |
| 79 | + |
| 80 | + def guess(self): |
| 81 | + # TODO: this is usually smarter, based on self.data and self.meta |
| 82 | + return [1000, 100, 100, 2000, 4, 4, 2000, 20, 20] |
| 83 | + |
| 84 | + # @jit |
| 85 | + def model(self, param): |
| 86 | + p = self.variables_dict(param) |
| 87 | + x, y = self.xy |
| 88 | + x2 = (x - p["x_center"])**2 |
| 89 | + y2 = (y - p["y_center"])**2 |
| 90 | + gauss = p["a_gauss"]*np.exp( |
| 91 | + -(x2/p["v_gauss"]**2 + y2/p["w_gauss"]**2)/2) |
| 92 | + r = 1 - p["v_parabola"]*x2 - p["w_parabola"]*y2 |
| 93 | + parabola = p["a_parabola"]*np.where(r > 0, r, 0)**1.5 |
| 94 | + return p["i_offset"] + gauss + parabola |
| 95 | + |
| 96 | + def process(self, cov, *param): |
| 97 | + r = self.variables_dict(param) |
| 98 | + r["cov"] = np.diag(cov) |
| 99 | + # TODO: handle cov, compute confidence intervals |
| 100 | + r["n_condensate"] = area_parabola(od_to_n(r["a_parabola"], self.meta), |
| 101 | + r["v_parabola"], r["w_parabola"]) |
| 102 | + r["n_thermal"] = area_gauss(od_to_n(r["a_gauss"], self.meta), |
| 103 | + r["v_gauss"], r["w_gauss"]) |
| 104 | + r["t_x"] = t_gauss(self.meta["mass"], self.meta["omega_x"], |
| 105 | + r["v_gauss"]*self.meta["pitch_x"], self.meta["tof"]) |
| 106 | + r["t_y"] = t_gauss(self.meta["mass"], self.meta["omega_y"], |
| 107 | + r["w_gauss"]*self.meta["pitch_y"], self.meta["tof"]) |
| 108 | + r["t"] = (r["t_x"] + r["t_y"])/2 |
| 109 | + return r |
| 110 | + |
| 111 | + |
| 112 | +if __name__ == "__main__": |
| 113 | + # generate some test data |
| 114 | + f = Fit2DGaussParabola() |
| 115 | + f.xy = np.ogrid[:300, :300] |
| 116 | + i = f.model(f.guess()) |
| 117 | + # make it noisy |
| 118 | + i += 100 + np.random.randn(*i.shape)*200 + i*np.random.randn(*i.shape)*.1 |
| 119 | + meta = dict(mass=constants.atomic_mass*87, tof=25e-3, |
| 120 | + omega_x=2*np.pi*30, omega_y=2*np.pi*100, |
| 121 | + pitch_x=2e-6, pitch_y=2e-6, |
| 122 | + detuning=0, sigma0=1e-12) |
| 123 | + |
| 124 | + # fit it |
| 125 | + f = Fit2DGaussParabola() |
| 126 | + p, r = f.run(i, meta) |
| 127 | + print(r) |
| 128 | + |
| 129 | + from timeit import timeit |
| 130 | + print(timeit("f.model(p)", globals=globals(), number=10)) |
| 131 | + |
| 132 | + import matplotlib.pyplot as plt |
| 133 | + fig, ax = plt.subplots(2, 2) |
| 134 | + for axi, ii in zip(ax.ravel(), |
| 135 | + (i, f.model(f.guess()), |
| 136 | + f.model(p), (f.model(p) - i) + 1000)): |
| 137 | + axi.imshow(ii, cmap=plt.cm.Greys, vmin=0, vmax=5000) |
| 138 | + plt.show() |
0 commit comments