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Abstract— Bipedal robots have gained a lot of locomotion
capabilities the past few years, especially in the control level.
Navigation over complex and unstructured environments using
exteroceptive perception, is still an active research topic. In
this paper, we present a footstep planning system to produce
foothold placements, using visual perception and proper en-
vironment modeling, given a black box walking controller. In
particular, we extend a state-of-the-art search-based planning
approach (ARA*) that produces 6DoF footstep sequences in
3D space for flat uneven terrain, to also handle rough curved
surfaces, e.g. rocks. This is achieved by integrating both a
curved patch modeling system for rough local terrain surfaces
and a flat foothold contact analysis based on visual range
input data, into the existing planning framework. The system is
experimentally validated using real-world point clouds, while
rough terrain stepping demonstrations are presented on the
WALK-MAN humanoid robot, in simulation.

I. INTRODUCTION

The need for humanoid robots to start operating reliably in
unstructured environments is critical for their usability in real
world tasks. Exteroceptive perception, e.g. visual and range,
plays an important role in legged robot navigation and foot-
step planning. The most recently developed humanoid and
bipedal robots, have shown impressive locomotion capabili-
ties for various types of terrain (flat and rough), using low-
level proprioceptive feedback control [1]. The state-of-the-
art footstep planning systems use exteroceptive perception
to navigate in uneven, but flat terrain surfaces [2], [3], while
leaving the stabilization of small environment uncertainties
to the controller. Thus, the need to plan a bipedal robot’s
footholds over rough terrain, i.e. on a rocky trail, remains an
open problem in legged robot navigation.

In this paper, we propose a novel footstep planning frame-
work that enables navigation over rough terrain surfaces
(Fig. 1). The system builds on top of the search-based
planning framework introduced in [4]. In particular, given
lidar point cloud data as input, ARA* [5] is applied to
produce the 6 Degrees-of-Freedom (DoF) footstep sequence
in 3D uneven surfaces. The method works only when the
environment has flat support surfaces for the feet positioning.
To overcome this limitation, we use bounded curved contact
patches to model foot-size local surfaces in the point cloud
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representation of the environment. We integrate the patch-
based foot contact reasoning methodology introduced in [6]
to produce (potentially partial) foothold poses in rocky
terrains. This was left open in the previous work, where
the operator had to pick manually the places where the foot
contact analysis had to take place. In addition, it provides a
novel solution to the autonomous footstep planning problem
over rough surfaces, which is a critical part for some tasks
such as rock climbing. The planner utilizes a gait generation
walking module and a stabilizing controller [7] as black box,
to handle the planned footsteps.

The system is implemented in C++ using the Point Cloud
Library (PCL) [8], the Surface Patch Library (SPL) [9] (with
the code available on our webpage), and the VIGIR footstep
planning framework [4]. Next, we cover related work, fol-
lowed by a summary of the flat-surface footstep planner and
the patch-based contact reasoning (Sec. II). Then, we present
the integration algorithm of the curved patch surface mod-
eling into the search-based footstep planner (Sec. III). Last,
we present experimental footstep planning results, using real-
world point cloud data and locomotion demonstration in
simulation, using the WALK-MAN humanoid robot.

A. Related Work

Bipedal locomotion has a long history in legged robotics
navigation, especially in the direction of control and tra-
jectory planning. During the last decade, the use of vi-
sual sensing enabled bipedal platforms to move towards
autonomous footstep planning. Initially, the vision-based
footstep planning methods were focused on the 2D cases, to
allow bipeds navigate among objects. A graph-based planner
for the ASIMO robot was successfully developed, using
monocular camera data in [10] and [11]. A similar planner
was used for 2D terrain navigation with the NAO mini-
humanoid, using range sensing in [12] and [13]. In [14] a
range sensing-based 2D planner for dynamically changing
environments was introduced for the NAO.

The extension of bipedal footstep planners to 3D was
first done for stair and obstacle climbing. In one of the
earliest works in 3D, the humanoid robot HRP2 used stereo
vision to plan horizontal stair climbing [15] and later the
humanoid robot QRIO used range sensing to plan steps
over inclined and elevated terrains [16]. In [17] and [18]
planning horizontal obstacle climbing, using laser scanning,
was introduced and applied on the HRP2 biped. In [5],
[19], and [20], stereo vision and range sensing were used
on NAO and HRP, respectively, to generate height maps
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Fig. 1. The footstep planning over a rough curved terrain for the flat 3D planner [4] (middle: plan with non-suitable solutions) and our introduced system
(right). In the latter, the non-numbered green/red poses are the start/goal planner poses, while the numbered green/red ones are the right/left foot footsteps.

for stepping on horizontal obstacles. Planar multi-contact
foothold reasoning for a simulated HRP2, using point cloud
data, was introduced in [21].

The DARPA Robotics Challenge (DRC) in 2015 played
an important role in bipedal locomotion in outdoors envi-
ronments. Humanoid robots gained capabilities to locomote
under uncertainty, traversing 3D uneven flat terrains. In order
to enable semi-autonomous crossing of such type of terrain,
a set of path planners producing 6DoF footstep sequences
were investigated. Stereo vision was used on the ATLAS
humanoid robot [22] for optimization-based [2] footstep
planning, where the operator determines manually obstacle
free polygon regions. In [4] and [3] lidar sensing was used to
achieve similar results, with a graph-based planning method-
ology and a heightmap/point cloud-based terrain modeling.
A similar planner was used for a simulated ATLAS model
and real range sensing data in [23]. The aforementioned 3D
footstep planning algorithms were focused on uneven, but
flat environments. In this paper, we try to extend a graph-
based planner to handle also rough/curved surfaces, where
partial footholds may be needed.

Towards rough terrain contact reasoning, point cloud data
were used in [24] and [25] to determine the points of
harsh foot impacts with the ground on a simulated HRP2
humanoid. These methods are focused on contact points for a
single foothold and are not yet integrated into a path planner.
In [26], a mini-biped performed a single foot placement on
rocky surfaces, using curved patches [27] as terrain models.
The contact planning system that was introduced in [28]
for rocky trails assumes single foot contact point with the
environment, while it was tested only in simulation, without
visual sensing. In this paper, we extend a state-of-the-art
graph-based footstep planner [4], [3] to handle contacts with
rough surfaces, based on appropriate rough surface modeling
through curved local patches.

Notice that significant research on footstep planning was
done for four-legged [29]–[33], six-legged [34], or even
hybrid [35] robots, but the single contact point between their
feet and the environment enables different type of planning
compared to the one we propose in this paper.

II. FLAT SURFACE FOOTSTEP PLANNER

In this section, we briefly review the 3D footstep planning
method for uneven flat terrain [4] that we use as the main
planner framework for the proposed extension to curved
surfaces, as well as the curved patch-based foot contact
reasoning [6]. For more details, we reference the readers to
the corresponding papers. We also identify the place where
the planner will be extended.

A. Uneven Flat Terrain Footstep Planning

The footstep planner that was introduced in [4], will be
the baseline system for our developments. It is able to
produce footstep planning sequences on uneven, but only flat
surfaces in the environment. We will extend this graph-based
planner to handle also rough curved surfaces and potentially
partial footholds. Thus, we first review the states, actions,
and transition model of the planner. Then, we will describe
the cost functions and the heuristics that are considered for
the planning solution. We use the A* (ARA*) method [36]
to find the shortest path from a starting to a goal position,
expressed as a footstep sequence.

1) States, Actions, and Transition Model: We con-
sider a 6DoF state space s, with the foot pose s =
(x, y, z, φ, ψ, θ, f), where (x, y, z) is the foot position,
(φ, ψ, θ) is its orientation as roll, pitch, and yaw values,
and f ∈ {left, right} foot. The transition t from a state s
to a successive one s′ applying an action a ∈ A (footstep
primitives), from a set of actions A, is a displacement in the
pose of the supporting foot:

s′ = t(s, a) = s
a−→ s′. (1)

The cost function c(s, s′) is similar to the one introduced
in [13], but applied on the full step representation, i.e.
considering the starting s and goal s′ states of the moving
foot, relative to the supporting foot s0. The set of actions A,
for the footstep primitive set, are sampled discretely from a
reachability polygon P next to the supporting foot s0.

2) Cost Functions and Heuristics: A hierarchical set of
cost functions was used in the planner. The cost, representing
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Fig. 2. Left: concave environment patch models, with their local coordinate frames. Middle: a concave cylindric paraboloid and an elliptic planar patch,
fitted to 3D points. Right: the contact analysis between the environment patches (in black) and a flat foot patch (in green), with the contact points (in red).

the effort to execute a step sequence, is based on the fol-
lowing functions: 1) constant—generates minimal number of
steps, 2) Euclidean—generates shortest paths, 3) boundary—
eliminates experimentally determined violations that cause
failures, 4) dynamics—generates low torso accelerations,
and 5) ground contact—eliminates footsteps without enough
terrain support. In parallel, the reachability polygon P is
selected such that step feasibility, i.e. risk, balances the effort,
i.e. cost. The anytime ARA* requires some heuristics for
the remaining cost estimation, when local minima are found
from the planner and is defined as follows:

ĥ(s) = ‖(s− sgoal)‖+ cθ · ‖∆θ‖+ cstep · nsteps (2)

where ∆θ is the angle between θ and θgoal, cθ and cstep are
constant angle and step costs, and

nsteps = b∆x̂/∆xmax + ∆ŷ/∆ymaxc (3)

is the minimum number of straight (with max distance
∆xmax) and side steps (with max distance ∆ymax) that are
required to reach the goal, where ∆x̂ and ∆ŷ are the
corresponding requested distances without rotations. The
latter is used to penalize side-walking vs. forward stepping.

3) Collision Check, and Ground Contact Support: A
3D planner requires collision checking and ground contact
estimation. The first one is solved in [4], [13] and considers
full body and feet collision checking. The ground contact
estimation is more important for this paper, since we propose
an extension to its concept, such that rough curved terrain
can be supported by the planner. The terrain is modeled as
a height-map and each point in the captured point cloud
is associated with a local normal. When a state s (i.e.
foothold) is generated in the xy-plane, its z-value (i.e. foot
center) is the corresponding vertical height of the height-map,
while the roll ψ and pitch θ values come from the normal
vector. Then, the foot is sampled equidistantly in order to
check for: 1) collision and 2) ground contact support. Only
when a sufficient amount of samples have ground contact
support and no collision has been detected, the foot pose is
considered as valid. This works perfectly when the ground is
flat (depending also on the noise of the input point cloud), but
when the surface is curved the foot either collides with the
terrain (concave surfaces) or does not have enough support
(convex surfaces). For this reason, step plans over rough
curved surfaces cannot be supported by this planner. A new
modeling for these surfaces and the foot contacts is required
as will be described next. An example of a successful and
a failing footstep planning case, due to these limitations, is
shown in Fig. 1.

B. Curved Patch-Based Foot Contact Reasoning

Given the need to represent contacts between rough
(curved) surfaces and flat foot soles, in [6] we introduced
a contact reasoning analysis between curved environment
patches that fit local point clouds on the terrain and flat
patches that represent the foot itself. In this work, we use
a subset of the introduced patches; those that have at least 3
non-collinear points of contacts (Fig. 2, right).

An environment patch of size slightly bigger than the
length of the foot, is modeled as a bounded curved patch
(paraboloid, spherical, or circular cylindric) [37]. The explicit
parametrization of a paraboloid in the world frame is:

z = zl(x, y) =
1

2
uT diag(k)u ∈ R (4)

where k , [κx κy]T are the intrinsic principle curvatures
and (x, y, z) ∈ R3 is a point on the patch in the local
frame. The extrinsic rotation r and translation t vectors,
transform a patch to the world frame. The spherical and
circular cylindric patch modeling are defined analogously
(see [6]). The contact analysis between any of these patches
that fit to the local areas in the environment and the foot,
results in a 6DoF foot pose (the frame attached to its
center). We represent this pose by its position (xp, yp, zp),
its orientation (rp, tp) (rotation/translation vectors), and the
N contact points with the environment surface ptci , for
i ∈ [1, N ]. The patch fitting and contact analysis for sizes
that fit to our robot feet sizes, take up to 1ms per patch.

III. CURVED SURFACE FOOTSTEP PLANNER

In this section, we describe the algorithm in which the
3D flat planner (Sec. II-A) utilizes the curved patch contact
analysis (Sec II-B) to configure and plan footholds on rough
curved surfaces, when the ground–foot contact support is
not guaranteed. First, we present the data input and pre-
processing, and then the patch-based planner extension.

A. Visual Input Data and Pre-processing

Point Cloud Input Filtered Point Cloud (in green)

Fig. 4. Left: an input point cloud, including rocky curved surfaces on flat
terrain. Right: the filtered point cloud (in green) after the pre-processing.
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Fig. 3. The outline algorithm of the proposed rough curved terrain 3D footstep planner.

The introduced footstep planning method requires as input,
point cloud data produced by any range sensor, such as RGB-
D, stereo-vision, or lidar sensing systems. In contrary to the
original planner [4], we require the data to be organized
(i.e. grid organized, with one-to-one correspondence with the
image) and from a projective device. This assumption is true
for all the range sensors we are using (e.g. ASUS Xtion, the
stereo camera and 2D lidar of the Multisense-SL). Notice
that the assumption holds even when point cloud data are
accumulated in a voxel-based grid structure (e.g. OctoMap),
since the raycasting to produce a point cloud takes place
from a virtual projective camera in the space (we have
theoretically and experimentally validated this in [26]). The
requirement of organized point clouds play a significant role
in the computational complexity of the algorithm, but also
in keeping a lookup table of the structures (i.e. patches) that
were fitted in a particular position in the space. In particular,
given the focal lengths fx, fy and the principal point offsets
cx, cy (coming from the intrinsic matrix of the projective
device), one can map a pixel (u, v) to the corresponding 3D
point (x, y, z) in the space (and the other way around) using:

u = (fxx)/z + cx, v = (fyy)/z + cy. (5)

For every point in the cloud, a normal vector n can
be computed fast using integral images [38]. We use the
covariance-based method, where eigen-decomposition on the
point cloud neighborhood takes place. The normal n is the
eigenvector that corresponds to the smallest eigenvalue λ0
(λ0 ≤ λ1 ≤ λ2). The method is particularly fast and works
only on organized point clouds. For instance, a point cloud

from the ASUS RGB-D sensor (307k points) is computed
in 160ms. We have tweaked the original integral images al-
gorithm, which works directly on pixel-based neighborhood
sizes (i.e., each point uses a fixed number of surrounding
pixels for the computation), to a radius-based one, where
the number of pixels that are used for each point depends on
its position. This is possible through backprojection from
the world to the camera image frame, using Eq. 5. The
methodology also extracts a curvature measure c, as the
largest eigenvalue over the sum of all:

c = λ2/(λ0 + λ1 + λ2) (6)

Notice that the original 3D footstep planner works efficiently
for flat surfaces. Thus, the curvature measure and the normals
are used to filter out areas that are flat. For these areas,
patches can be excluded from fitting during the planning, as
the original flat 3D pose fitting will already quickly provide
suitable results.

Using the integral images process, for every point in the
cloud, we compute two normal vectors nf and nh, one for
radius r (i.e., the length of the foot) and one for r/2. Using
these two normals per point one can calculate the angle
between them:

φnn = cos−1(nTf · nh) (7)

This can be used as a measure of the irregularity of the
surface at the particular point. Such an area may not be
possible to be represented by a second degree polynomial
(such as our fitted curved patches). Thus, these areas can also
be filtered out and excluded from the patch fitting process.



The curvature and the angle between two-scaled normals
for each point is crucial to guarantee a computationally
efficient planner, since the fitting and contact analysis method
per patch may take up to 1ms, which could be slow if it is
applied to thousands of points. Notice also that given the
ability for our patches to handle point uncertainties during
fitting, no other filtering is required for the fitting process.
An example of such areas appear in Fig. 4, where in green
are points that were not filtered out after applying a 0.02 and
30deg threshold for c and φnn, correspondingly.

B. Footstep Planning Adaptation Algorithm

Given the input point cloud, published both in the camera
(as organized) and in the world (left foot) frames, we give
the adaptation of the 3D footstep planning algorithm that
handles rough curved surfaces. A diagram of the algorithm
is visualized in Fig. 3.

Input: An organized point cloud pc. The foot size (length,
width) fs = (fl, fw).

Stage 1. (smoothed input and data structures) Filter
the input cloud pc to a smoothed one pcs, after applying a
voxel grid, moving least square, and pass through filtering,
as described in [4]. Generate also the height-map and extract
the point normals n’s. These are needed to have the original
flat-surface footstep planner working. Proceed to Stage 2.

Stage 2. (filtered input cloud) Find the curvature c
(Eq. 6) and the angle φnn (Eq. 7) between the fine and
coarse normals (nf , nh) for each point in cloud pc, as
described in Sec. III-A. We set the neighborhood radius
slightly bigger than the foot’s length: r = fl/2+ ε, for some
small ε ∼ 1− 2cm. Filter out, to a new point cloud pcf , the
points for which:

c < cthres φnn > φthres (8)

for the experimentally determined thresholds cthres = 0.02
and φthres = 30deg. Proceed to Stage 3.

Stage 3. (footstep planner core) Run the 3D footstep
planner as described in Sec. II-A. Each new state (footstep)
s′, coming from Eq. 1, consists of an (xs, ys) and θs (yaw)
sample in the 2D ground plane, while the zs value comes
from the height-map and the φs and ψs (roll and pitch) from
the corresponding normal vector ns. Proceed to Stage 4.

Stage 4. (state’s collision/support check) For the new
state proposal s′, check whether the ground contact support
estimation fails, either due to collisions between the foot and
the environment or due to the absence of sufficient contact
points (see Sec. II-A.3). In such failing case go to Stage 5,
otherwise continue the planner as is, back from Stage 3.

Stage 5. (contact patch generation) If the point pts =
(xs, ys, zs), is not in the filtered point cloud pcf , go back
to Stage 3 and continue the planner as is. If a patch has
been already fitted for pts, extract it from the lookup table
(see Sec. III-C). Otherwise, fit an environment patch pe
to pts’s fs-sized point neighborhood and determine the
corresponding foot contact patch pc (Sec. II-B). Proceed to
Stage 6.

Stage 6. (contact patch re-estimation) If the foot contact
patch pc is one of those that appear in Fig. 2-right, with
four points of contact go to Stage 7, otherwise continue the
planner as is in Stage 3. Re-orient the foot contact patch
pc around the z-axis, such that the difference θdiff between
its yaw value θpc

and the state’s θs one is minimized. See
Sec. III-C for the details. Proceed to Stage 7.

Stage 7. (contact patch validation) Validate the foot
contact patch pc, with respect to the following two metrics,
such that contact patches that cannot support a footstep are
filtered out:
1) Positive residual ρ: the root-mean-square Euclidean dis-
tance between the patch’s N-neighborhood data points pi =
(xi, yi, zi) and the corresponding nearest points qi on the
patch itself:

ρ =

√∑N
i=1 ‖pi − qi‖2

N
(9)

such that zi ≥ 0 in the local patch frame, i.e., the points are
above the patch’s surface. These points maybe cause early
contact with the environment. The metric also validates the
patch fitting process itself. If the positive residual exceeds
an experimentally defined threshold, ρ ≥ ρthres = 2cm, go
to Stage 3.

2) Contact points neighborhood ν: the number of points
close to the contact points between the foot contact and
the environment patch. This metric represents whether the
surface can support the foothold. If the number of points
does not exceed some experimentally defined threshold, ν ≤
νthres = N/25, for an fl/5 neighborhood, go to Stage 3
(as above, N is the number of sample points of the patch’s
neighborhood). Otherwise, proceed to Stage 8.

Stage 8. (contact patch state estimation) In this stage,
a foot contact patch pc has been generated to potentially
update the φs, ψs, and zs values of the current planner
state s = (xs, ys, zs, φs, ψs, θs). Given the foot contact patch
position (xp, yp, zp) and orientation φs, ψs, θs, we set:

zs = zp, φs = φp, and ψs = ψp (10)

if the distance between (xs, ys) and (xp, yp) is small, as well
as the angle between the patch’s local z-axis (its normal) and
the normal vector ns of state s, that comes from the roll and
pitch values. Proceed to Stage 4, unless a solutions was found
and no other state search is required.

Next, we discuss the way that the contact patches are
cached (Stage 5) and correctly re-oriented (Stage 6).

C. The Foot Contact Patch State

In our previous work [6], we have described a way to
detect a foot contact patch pc given a fitted environment
one pe, for all the possible environment patch types and foot
patch orientations. In this paper, we select a subset of these
environment patches pe’s, that guarantee at least 4 points of
contact with the surface and are shown in Fig. 2-right.

The original footstep planner [4] guarantees very efficient
computational timings, due to the height-map and normals
generation that can be quickly accessed for every visiting



Fig. 5. Four setups: the input point cloud, the flat surface footstep planner [4] without suitable solutions, and our introduced footstep planning (in black
the fitted patches). The non-numbered green/red poses are the start/goal poses. The numbered green/red poses are the right/left footsteps.

state, which is computed in roughly 0.01ms. In our case, the
patch fitting and the foot patch contact analysis take around
1ms, so a caching method is also required in Stage 5 of the
algorithm so that we do not re-fit patches at the same 3D
point neighborhoods. Given that the cloud is organized, we
hold a us×vS patch lookup matrix (us/vS is the width/height
of the input in pixels). For each 3D sample seed point we
save the corresponding fitted patch, using Eq. 5 for indexing.
Through this lookup matrix, fitted patches can be quickly
accessed. Notice that our system is thread protected and
thus can be executed in multiple cores to speed up more
the process.

In Stage 6 of the algorithm, when a state s is visited
during the planning, its yaw value θs is part of the search
sample tree. Thus, it is required to orient the contact patch
pc towards that direction. The circular/planar paraboloid and
the spherical patch have revolute symmetry around their local
z-axis. Thus, pc can align s’s yaw orientation, while keeping
4 points of contact with pe. In contrary, the elliptic/cylindric
paraboloids and the circular cylindric patch have 4 points of
contact only when pc’s local x-axis aligns with pe’s x and
y local axes. If θpc

is the yaw value of pc, then we pick the
one that minimizes:

θdiff = θpc
− θs. (11)

In the next section, we present the experimental validation
of the proposed footstep planner.

Exp. 1 Exp. 2 Exp. 3 Exp. 4
steps (curved): 6 (2) 6 (2) 6 (1) 6 (1)
exp. states: 18 64 71 36
retr. steps: 270 809 759 210
fit. patches: 32 44 34 28
drop. patches: 28 19 27 24
path cost: 1.32 1.55 1.34 1.43
total planning t: 16.3s 21s 15.3s 17.4s

TABLE I
FOOTSTEP PLANNING STATISTICS

IV. EXPERIMENTS

In order to test our system, we perform two types of
experiments. First, we acquire four different point clouds
using a range sensor and we show footstep plans through
curved rough surfaces. In the second one, we create a
virtual environment that includes a rough surface and using
our developed planner we let the WALK-MAN humanoid
robot [39] locomote, in simulation. One of its steps is on the
curved surface, where partial foothold contact is required.

A. Rough Curved Terrain Planning

For the perceptual experiment, we collected point cloud
data from four different scenes, as shown in Fig. 5. Each one
includes some rocks placed on a flat surface, that block the
right part of the path. We first show that the original footstep
planning [4] is not able to produce a suitable solution based
on flat footholds, due to the rough curved surfaces in the path.
Then, we run our proposed planner for the same path, ten
times each. As shown in Fig. 5, our planner is able to always
find a footstep sequence using one or two footsteps on the
rocky terrain. We also collected statistics on the experiments



Fig. 6. Four steps (one on a curved surface) planning and locomotion
experiments using the simulated WALK-MAN robot model in Gazebo.

and recorded the average values in Table I. The statistics
are: the total number of produced footsteps and the count
of footsteps produced on curved surfaces (noted as: steps
(curved)), the total number of expanded states during the
planning (noted as: exp. states), the number of the retrieved
steps coming from the lookup tables (noted as: retr. steps),
the total number of fitted patches (noted as: fit. patches),
the number of dropped patches due to the evaluation (noted
as: drop. patches), the path cost (noted as: path cost), and
the total planning time (noted as: total planning t). The
experiments ran on an Intel Core i7-4790K CPU at 4.00GHz,
using 8 CPU cores and 16GB RAM.

In order to compare our results with the original planner’s,
we run the footstep planner on flat surfaces (using the same
point clouds that we acquired), to produce 6 steps. In this
case, ∼ 2, 000 states were expanded in average, for a total
planning time of ∼ 10sec. From the statistical results in Tb. I,
we can first see that our algorithm expands a small number of
states, since it finds optimal paths through the rough terrain.
Notice also that any planning of the original planner around
an obstacle, may cause a significant increase in the number
of states expansions. Secondly, we notice that the number
of patches that are required are not that many, but most of
them are declined due to bad fitting and, thus, representation
of the underlying surface. Moreover, the overall planning
is sufficiently fast, compared also to the original planner.
The timing increases with the number of expanded states,
the retrieved steps, and the fitted patches. Our code is not
optimized and even though the patch fitting process does
not take much time (1ms per patch), the implementation of
the lookup tables/matrices and the conversions between the
world and the camera frame are not computational optimal
and should be further improved.

B. Locomotion Experiments in Simulation

In order to prove that the footstep plans that are generated
from our algorithm are feasible for locomotion, we created a
virtual environment in Gazebo, with a flat terrain that has a
curved v-shaped surface in the path (Fig. 6). The two planes
that compose the v-shaped surface, have an inclination of 17◦

with respect to the ground. Then, we placed the simulated
WALK-MAN humanoid robot on the terrain, such that the
curved surface is in front of its left foot. Using the virtual
Multisense-SL stereo camera, which is at the robot’s head,
we acquired the terrain point cloud data. We gave as goal
pose, for the footstep planning and locomotion, the area after
the end of the curved surface.

We first run the original flat footstep planner [3] and
show that it is unable to find a feasible solution in less
than 60sec. This is because the planner needs to expand a
lot of states to generate footsteps around the obstacle, i.e.
curved surface, which is time consuming. On the contrary,
we show that our introduced planner is able to find a footstep
sequence with a step on the curved surface in 17.7sec. The
planned footsteps are then sent to the robot’s gait pattern
generator [7], to create the CoM and feet trajectories based
on the generated plan. The gait generator is responsible to
check and generate a feasible execution sequence of the
footsteps [40]. From the controller part, some ground impacts
(due to early foot landings) are reduced with a feed-forward
joint angle compensations that eliminates the unexpected
deflections. Fig. 6 illustrates this experiment, where WALK-
MAN is following the planned footsteps in a successful
locomotion task.

V. CONCLUSIONS
In this paper, we presented a new footstep planner to deal

with rough curved surfaces in the environment. We extended
a state-of-the-art flat footstep planner, by integrating a curved
contact patch analysis, to deal with rough curved terrains.
We proved experimentally that our footstep planner is able
to generate efficient footsteps, where the original flat planner
cannot, and that the planned footholds can be used for loco-
motion. For the latter, we used the WALK-MAN humanoid
robot in simulation.

From the engineering point of view, the method can be
further optimized to produce faster footstep plans (using
for instance GPU-based approaches), while the patch fitting
algorithm needs to handle better non-regulars areas. In this
way, the patches may represent better the underlying envi-
ronment surfaces, decreasing the number of the dropped ones
and thereby improving the time efficiency of the method. We
also plan to test our algorithm in more complicated scenarios,
such as planning hiking paths in rocky trails, where multiple
footsteps are on curved surfaces. In this way, more RGB-D
data can be analyzed, especially in cases such as environment
edges, where the depth information may cause planning
issues. We plan at using the hiking dataset that was generated
in [41], and reason also the threshold selection (for instance
using machine learning approaches). Moreover, real robot
experiments need to be performed, though a more reliable



controller that can stabilize the robot in a quasi-static mode
needs to be implemented. The experiments will focus also
on multiple steps over rough terrain, where the support foot
may be on some rough surface during locomotion. Moreover,
stability results will be studied accordingly. Last but not
least, a SLAM or state-estimation method is required to be
integrated in the system. Given that the robot may slip from
the original footstep plan after some steps, it should be able
to follow the steps by an on-line trajectory correction or
footstep planning re-generation.
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