Learning to Code with Python
Xavier Rubio-Campillo (xavier.rubio@ed.ac.uk)

18th May 2017

Summary
This tutorial will teach you to:

¢ understand the basic concepts of a programming language
* repeat tasks with loops

* structure your code with functions

* add some logic to your code

¢ open text files

* plot stuff

Why Python? There are several reasons
behind this choice:

Why code? "

Software is a vital part of any field of knowledge. We use databases
to store information, analytical tools to explore it, word processors
to write our results and browsers to look for relevant research. All

+

this software is created in a similar manner: first, a set of complex
instructions is written in a specific programming language such

as C++ or Java. The next step is to compile this code: to generate a
binary version that can actually be understood by any computer. The
final step is to distribute this binary so you can download, install and
use the package.

This is useful as long as you find a specific tool that can meet the
requirements of the task you have in mind, but what if this is not the
case? Maybe you read a new method in some paper and you want
to apply it to your dataset, or maybe you would like to tweak the
behavior of the program because it was not designed for your needs.
Some of this software is distributed under open source licenses so
you can check, edit and extend its functionality. If you have some
basic understanding of coding then you will be able to modify or
even create new software adapted to your needs.

Disciplines such as Biology or Physics are aware of the importance
of programming and it is part of their teaching, but this is not com-
mon in the Social Sciences and Humanities. This tutorial will explain
the basics of programming for social scientists and humanists by
using one of the currently most popular languages: Python.

it’s easy to learn because its syntax
makes sense

it’s free and open

its community is diverse and
friendly

it has everything you will ever need
for research: statistics, visualization,
parallel processing...

LEARNING TO CODE WITH PYTHON

The task

We (humans) usually learn things when it is useful for us. This is
particularly true when you need to invest a decent amount of time
on the process, or the learning curve is steep such as coding. In this
tutorial we will create the code to solve a specific task so you can
explore the potential of coding to your own interests. This is what we
are going to do: we will identify the most frequent words used in a
book. This task is rather common to a large amount of disciplines in
the Social Sciences and Humanities, and it is rather similar to other
tasks that you could be interested on solving. Overall it will be a
good example of what you can achieve by learning Python.

We need to learn lots of things before we can achieve this task, but
don’t panic yet! We will go step by step so let’s begin with the basics
concepts of any programming language; you will need them once
you focus on the task.

Basic Concepts

The first thing you need as a coder is some place to write and run
your program. We will be using spyder, one of the best IDEs (Inte-
grated Development Environment) for Python programmers. Open

spyder in your computer to see an interface like the one in Figure 1

Figure 1: The Spyder IDE

There are 3 windows:
1. In the left you got an editor to write your code

2. The window at the top right can be used to inspect what is going
on in your program

3. The bottom right is the Python console

Performing arithmetics

The thing you need to remember is that a computer is essentially
a calculator; yes, it is a super-mega complex calculator but it is still
a calculator. Let’s start with simple arithmetics; type in the console
(bottom right):

2+1
3x4
2/32

As you press the Enter key after each operation you will see the
results as shown in Figure 2.

Object inspector | Variable explorer | File explorer

IPython console < 0

| E8 Console 1/A & |

In [2]: 2+1
Out[2]: 3

In [3]: 3*2
Out[3]: 12

In [4]: 2/32
Out[4]: 0.0625

In [5]: |

Console History log | IPython console

Storing results in variables

This seems interesting, right? Well, not really but we will get there!
One basic idea of any programming language is the concept of a

variable. It is essentially a symbol that you will use to access results.

For example if you type:

myFirstVariable = 2
theNameOfThisVariableIsTooLong = 5
myFirstVariable + theNameOfThisVariableIsTooLong

You should get a seven as the output. You can also store the result
into a new variable and print it on the console:

LEARNING TO CODE WITH PYTHON 3

Attention!! Don’t worry if you get
errors when you run your code: it is
normal while you are developing a
program. It can be caused by typing the
wrong symbol or asking for the wrong
operator. You should read carefully the
error in order to fix it. Also, you cannot
break the computer from spyder so
experiment with the console as much as
you want!

Figure 2: The Python console will run
any command you type inmediately

A variable is a symbol that represents a
quantity. You create variables to store
values and combine them into new
calculations

myResult = myFirstVariable + theNameOfThisVariableIsTooLong
myResult

LEARNING TO CODE WITH PYTHON

All these variables are integers. In Python you can create variables
of several different types, such as floats and strings:

thisIsAFloat = 2.75652
andThisIsAString = "this is a string"

thisIsAFloat + andThisIsAString

Wow what happened here? It gave you an error telling you that
you tried to sum a float and a string (or str), which as you can imag-
ine does not make a lot of sense. It’s ok; it is difficult to get the per-
fect code so these errors will help you identify and solve problems in
your program.

You can also create variables as an aggregation of other variables.
One type that is really useful is the list. Let’s create one list of inte-
gers:

alist = [3,1,4,1,5]

alist

Lists are really powerful because you can access anytime its ele-
ments by index (the first element, the second element, and so on...).
Indexes always start at 0. In this example the number 3 is in position
0 and the number 5 is in position 4. Try it!

aList[0]
aList[4]

Now try to access an element that does not exist such as aList[5].
What do you get? Yep, another error...if you continue coding you will
see lots of them, trust me!

You can also modify the contents of a list after you create it:

aList[2] = "thisIsNotANumber"
aList[4] = 3.14159
alist

But what happens if you want to modify all the contents of a list?
For example, imagine that you have a list of integers and you want
to add 1 to each of the values in the list; you could do this one by
one but...what if you got 63145 elements? You could a) spend a nice
weekend with it or b) iterate through the elements with a loop.

working with the editor

Before we loop we need an additional tool. The code for a loop re-
quires more than a single line so we will move from spyder’s console

An integer is a whole number: 2, 31,
-12361...

A float is a real number (one with
decimals): 2.31, -6.1213232...

a string is a sequence of characters:
"hello", "how are you?"

A list is a collection of variables

I know, it’s weird that programmers
start counting at o instead of 1 but we
have our reasons! The index of a list
points towards a memory position in
your computer; the index works as the
offset (so the first position has offset o

LEARNING TO CODE WITH PYTHON §

to the editor (the left window). Anything you type here will be exe-
cuted if you click on the Run button or you go to the menu bar and
click on Run —Run. There are some lines already but they are com-

ments that won’t be evaluated by the system A single line comment starts with a #

One important difference between working in the console and symbol

A multiline comment starts and ends
with three double quotes ”””.
can do it by usimg the function p rint: A script is a text file with a small

running a script is that the output won’t be printed by default. You

program ready to be executed. Python

this is a comment is an scripting programming language

int ("Hell 1d1M) because you don’t need to compile
print ello torld: the code before running it; there is an

installed interpreter that takes care of
translating your code to something that
your computer can understand.

If you Run now the code you should see in the console an output

such as: A function is a piece of code that re-
ceives some inputs (between paren-
In [1]: runfile(’/home/foo/.spyder2-py3/temp.py’ ... thesis), does some calculations and

(usually) returns an output

Hello World!

So as you can see the comment is ignored while the second line is

executed (and some stuff printed). It is always good to document your
code with comments explaining its
purpose and functionality

looping through a list

Now that we covered the basics of the editor we can go back to
our original question: how can we modify the contents of a list as
a whole? We need to iterate through the contents of the list. This can

be done in this way: Attention! Indentation is very important
in Python as it defines the limits of the
loop. Make sure that the lines printing
and modifying the values of the list are
alist = [3,1,4,1,5,9,2,6,5,3] one tab or 4 spaces to the right

store its length on a new variable
alistLength = len(alist)
print("list:",alist,"has length:",aListLength)

create a list of 10 numbers

loop through a range of 0 to alListLength

for index in range(0, alListLength):
contents of the loop are indented!
print("value",alist[index],"at position:",index)
add one to the number at position index of the list
alist[index] = aList[index]+1

print ("modified list:",alList)

Let’s take a look at the code line by line:

e alist =[3,1,4,1,5,9,2,6,5,3] - creates a list with 10 integers inside
(you can choose others if you want)

LEARNING TO CODE WITH PYTHON 6

o alistLength = len(aList) - here we use the function len to get the
length of our list. The output is stored in a variable called aL-
istLength.

o print("list:",aList,"has length:” ,aListLength) - not much here; we print
the contents of the list and also its length

e for index in range(o, aListLength): - this is the loop; we iterate

through all the values between o and aListLength-1 (so o and 9). The function range gives you a range of
values between its first parameter up
to the second one, so in this case it will
give: 0,1,2,3,4,5,6,7,8,9.

During each iteration the contents of the loop will see the variable
index with a different value inside the range, so index is automati-
cally incremented between iterations.

o print("value” aList[index],"at position:”,index) - during each iteration
we print the index (so it will be 0,1,2,3...until 9) and its value.

 aList[index] = aList[index]+1 - here we modify the value by adding
one to the previous one.

o print("modified list:”,aList) - a final print to show the modified con-
tents

If you run this code you should see this in the console:

list: [3, 1, 4, 1, 5, 9, 2, 6, 5, 3] has length: 10
changing value 3 at position:
changing value 1 at position:
changing value 4 at position:
changing value 1 at position:
changing value 5 at position:
changing value 2 at position:
changing value 6 at position:

changing value 5 at position:

©W 00 N O O W NN = O

3
1
4
1
5
changing value 9 at position:
2
6
5
3

changing value 3 at position:
modified list: [4, 2, 5, 2, 6, 10, 3, 7, 6, 4]

This worked! You almost have all the basics of any programming
language. You only need 2 more ideas: how to create functions and
how to run code based on logic conditions.

conditions and functions

In the previous code we used a couple of standard functions in
Python: len and range. This code receives some input variables as
parameters and return an output. In the first case it receives a con-
tainer of some kind such as a list and returns its length; in the second

LEARNING TO CODE WITH PYTHON 7

case it receives two values (minimum and maximum) and returns the

sequence of integers between them. It also has an abbreviated version

where it receives just the maximum and defines the minimum at o.
How do you define a function? Imagine that you want to create a
function that returns the maximum value of a list. You will need: a)

so range(o,10) and range(10) returns
exactly the same sequence

the list as input b) iterate through it and get the maximum value and

¢) return the maximum value you found. Let’s write this to make our

algorithm clear:

Attention! Don’t type this! It is a piece
of pseudocode; it is useful to clarify your

function getMaximumValue(alist):
maxValue initialized at -1
for item in alist then:
if item is larger then maxValue then:

maxValue equals item

return maxValue

ideas without the hassle of the specific
syntax

See what we did here? We loop through the list and then we apply

a condition: if the current value of item is larger than a minimum

value then we enter the next sub-block of code. In this sub-block we
update maxValue. If the condition is evaluated as False then we will

not run the sub-block; the lines in it will be ignored and the loop

will continue with the next iteration. Once we finish we return the

maximum value we found. This can be translatedinto Python as:

You can save the editor’s contents going
to File —Save as... and specifying a

def getMaximumValue(alList):
maxValue = -1
for item in alist:
print("current:" ,maxValue,"test:",item)
if item > maxValue:
maxValue = item
print ("updated next value!", maxValue)

return maxValue

file name. A new file can be created by
going to File —New File...

As you probably noticed this loop is slightly different than the

previous one. Here we only care about the values in aList and not
their index, so the loop is simpler as we don’t need the length of the

list of the range of indexes.

Create a new file and type the definition of the function getMax-

imumValue. If you run it nothing will happen (well, maybe some

errors...). You need to call the function to evaluate it so type this after

the definition of the getMaximumValue function:

\aList =[3,1, 4,1, 5,9, 2, 6, 5, 3]

‘maxValue = getMaximumValue (aList)

LEARNING TO CODE WITH PYTHON 8

‘print(”list:”,aList,”has maximum value:",maxValue)
L |

You should get an output such as the one in Figure 3.

Editor - Inome/xrubiolspyder2-py3itemp py © | objectinspectar

2 wmppy © = object

(atist)

g+ item)

Figure 3: Calling a function

This is it! We iterated(!) through the list of basic concepts of pro-
gramming using Python. It is now time to finally go for our task.

Counting words

As you remember what we want to do is to show the most frequent
words in a book. Specifically we will need to:

load the contents of a book
e identify the words in the text
¢ count the number of repetitions (i.e. frequency) of each word
¢ sort the words by their frequency
* get and print the list of top words and their frequencies
Let’s start with the main code; once we know what it should look
like it will be easier to implement the different functions we need.
The main block of code

The list of tasks that we need define our main code. It can be defined

as: Attention! This code will not work now
because we need to define the functions
that we are using: getWords, countWords
and getFrequent

parameters

[|
| |
‘bookFile = "frankenstein.txt"
‘# top 10 frequent words

LEARNING TO CODE WITH PYTHON 9

numFrequentWords = 10

print ("counting top",numFrequentWords,"from:",bookFile)

split the book in words and count them
wordList = getWords(bookFile)

freqs = countWords(wordList)

select and print the most frequent ones
topWords,topFreqs = getFrequent (freqs,numFrequentWords)
print (numFrequentWords,"top frequent words are:",

topWords,"with freqs:",topFreqgs)

If you run this then you will get the output of the first print BUT it
will give you an error as we did not define our functions. Let’s start
with getWords.

parsing the text file

If you go to the folder where this tutorial is placed you will find a
subfolder called books with some files. Each of the files is an entire
book downloaded from the Guttenberg project; you can open and
read any of them using a text or word editor such as Microsoft Word
or Notepad.

This is cool if you want to read the book, but we are interested on
automatically reading and parsing the books from Python. The idea
here is to open the file and then loop through its lines; for each line
we will divide its contents based on space characters to finally get the

words. This is the basic code: functions need to be defined before they
are called so type this before the main
def getWords(bookFile): text

book = open(bookFile)

for line in book:

print(line)

Bear in mind that the variable bookFile should define the path
towards to text file so please, check that you are using the correct one
(otherwise you will get a FileNotFoundError). If everything works you
will see the entire content of the book printed in the console. Now we
need to split each line into words (i.e. blocks of characters separated
by spaces) and return a list of them. Replace the function definition
with the complete one:

‘def getWords (bookFile) :

LEARNING TO CODE WITH PYTHON 10

create empty list
list0fWords = []
book = open(bookFile)

for line in book:
splitLine = line.split()
for word in splitLine:
list0fWords.append (word)
print ("number of words:",len(list0fWords))

return listOfWords

If you run again the script it will print the number of words before
throwing an error about the next function that has not been imple-
mented (countWords). Some remarks:

® open opens the file and gives its contents as output

¢ split is a functionality included into any variable of type string. It
splits the string based on a separator (space if none provided) and

returns the list of strings generated by the split. confused by split? Type this in the
console: "this is a sentence".split()
¢ append is a functionality included into any variable of type list. It

allows the list to include a new item (in this case the new word).

* We nested a loop within another one; the first one iterates through
the lines of the book while the second one iterates through the
words of each line.

Done, now for the next function: countWords.

counting words

We will need now to create a set of unique words so there are no
repetitions inside the list of words. At the same time we need to also
store the number of repetitions for each of these unique words. This

can be done using a dictionary variable: A dictionary is similar to a list, but each
value inside must be unique and works
def countWords(1listOfWords): as a key for a given value; in our case
o the keys are the words and the values
create an empty dictionary are their frequencies

uniqueWords = {}
for word in listOfWords:
if word in uniqueWords:
uniqueWords[word] = uniqueWords [word]+1

else:

1

print ("number of unique words:",len(uniqueWords))

uniqueWords [word]

return uniqueWords

LEARNING TO CODE WITH PYTHON

The behavior of the function can be summarized as follows; we
iterate through the list of words. For each word we evaluate if it is
already stored in our dictionarys; if it is then we add one to its count;
otherwise we register it and assign to the word a count of 1. The final
step is to return the dictionary.

selecting top words

Now we got our list of unique words with frequencies so the next
step is to select the most common ones. We will sort the list of words
based on their values and select only the top ones. We can do the
first step by using the function sorted. It receives three parameters: 1)
the dictionary to sort, 2) the key to sort it, in our case the value, 3) an
optional parameter to choose between ascending and descending (i.e.
reversed) order. The function sorted returns the complete list of words
so we can subset the most frequent ones from it.

Our new function uses this output to generate and return 2 lists: a)
the list of top words and b) the frequency of these words. In python
a function can return multiple variables by simply listing them with
commas:

def getFrequent(freqs, numFrequentWords):
sortedWords = sorted(freqs, key=freqs.get, reverse=True)
mostFrequent = sortedWords[0:numFrequentWords]
listFregs = []
for word in mostFrequent:
listFreqs.append(freqs[word])

return mostFrequent,listFreqgs

As you can see once we compile the list of sorted words then we
can subset from the list from position o (the most frequent word) to
position numFrequentWords. Done!

Plotting frequencies

We completed our task but some work could be done in its output.
For example, what is the distribution of frequencies amongst the
words? Are these frequencies balanced? Is a majority of words ap-
pearing only once?

Let’s see how can we create a basic plot visualizing the frequency
distribution of words. We will use a python library called matplotlib

that has lots of cool functionality on...yep, plots.. See lots of examples of matplotlib here:
We will load the library and then plot a histogram of frequencies https://matplotlib.org/
of the top words (at the end of our main code): By default spyder places the plot into

the console. If you want a popup
window go to the main menu Tools
—Preferences —IPython Console
—Graphics and select Qt as Backend.
You may also need to restart spyder.

https://matplotlib.org/

LEARNING TO CODE WITH PYTHON 12

import matplotlib.pyplot as plt

plt.hist (topFreqgs)

You should get something like Figure 4. As you see a handful of
words have very high frequency but the count rapidly decreases.

90 T T T T T T

0 500 1000 1500 2000 2500 3000 3500

However, the words are lost...if we are interested on them then we
could create a scatterplot with the list of words as the X axis:

rangeWords = range(len(topWords))

plt.plot (rangeWords, topFregs, "o")
plt.xticks(rangeWords, topWords, rotation=45)
plt.show()

Here at Figure 5 we plotted the frequency of the top 20 words.

You managed to go through the basics of Python, parse the book,
count frequencies and even plot its results! Not bad for a short tu-
torial...hopefully it allowed you to understand the possibilities of
Python in terms of your own interests and requirements. If you want
to improve this code take a look at the following section.

4000

Figure 4: Histogram of frequencies for
100 top words

LEARNING TO CODE WITH PYTHON

4000

3500 |-
3000 |
2500 |-
2000 | *
1500 |
1000 | ® e

(]
500 +

ol S SR S
eV EC QO FALS AT ELESEDNE S » &% SECIFRCI IS OISR D o
A & G ~¢’b§"§\° FF P OF@ OQAQ@@ @-A&\&@&\ A §w\<\\\§:«o L’o@\) ‘g\‘&@

Figure 5: Scatter plot of words and
frequencies for 40 top words

Improvements

There are plenty of things you could try to improve the functionality
you implemented today. Here is a list of challenges that will guide
your learning of Python.

Cleaning the book

You probably noticed that some of the words are not correct (they
have commas, dots, some of them are upper or lowercase...). You
could use some of the Python functionality to clean them before
you add them to the listOfWords within the getWords function. For
example the isalpha method:

def cleanWord(word):
cleanedWord = []
for character in word:
if character.isalpha():
cleanedWord.append (character)

return "".join(cleanedWord)

Stop words

The most frequent words of any text are boring because they will
probably be common articles, verbs and prepositions. This is not
good if you want to see differences between texts because the or being
will be present in all of them at a really high frequency. You could
apply a filter to the list of words before counting them to avoid this.

13

LEARNING TO CODE WITH PYTHON

The trick is to receive as input the blacklist of words to ignore and do

not append them to listOfWords if they are present in this blacklist.
You can get a popular list of stop words in English from here:

https://gist.github.com/sebleier/554280

Differences between books

We could analyse the words used by the different authors to identify
patterns between works; are fiction works more similar between them
than with essays? What are the words used in non-fiction works?
What words are used across any type of work?

Identify the similarities and differences between the list of top
words provided by each of the 4 books (or download new ones!).

Appendix - Resources

All books were downloaded from the Project Gutenberg: https:
//en.wikipedia.org/wiki/Project_Gutenberg. You will find here
the links to the original works:

e Pride and Prejudice by Jane Austen https://www.gutenberg.org/
ebooks/1342

® The Communist Manifesto by Karl Marx https://wuw.gutenberg.
org/ebooks/61

¢ On the Origin of Species by Charles Darwin https://www.gutenberg.
org/ebooks/1228

¢ Frankenstein; or the Modern Prometheus by Mary Shelley https:
//www.gutenberg.org/ebooks/84

You will find more information on Python and coding on these
sites:

* The task of this tutorial was inspired by the awesome tutorial
Python Programming for the Humanities by Folgert Karsdorp - http:

//www.karsdorp.io/python-course

¢ There is a large list of Tutorials for Python in its official webpage -
https://wiki.python.org/moin/BeginnersGuide/Programmers

¢ Are you a researcher? This tutorial on Python for Social Scientists
focus on the tools you need for analysis - https://realpython.
com/blog/python/python-for-social-scientists/

14

https://gist.github.com/sebleier/554280
https://en.wikipedia.org/wiki/Project_Gutenberg
https://en.wikipedia.org/wiki/Project_Gutenberg
https://www.gutenberg.org/ebooks/1342
https://www.gutenberg.org/ebooks/1342
https://www.gutenberg.org/ebooks/61
https://www.gutenberg.org/ebooks/61
https://www.gutenberg.org/ebooks/1228
https://www.gutenberg.org/ebooks/1228
https://www.gutenberg.org/ebooks/84
https://www.gutenberg.org/ebooks/84
http://www.karsdorp.io/python-course
http://www.karsdorp.io/python-course
https://wiki.python.org/moin/BeginnersGuide/Programmers
https://realpython.com/blog/python/python-for-social-scientists/
https://realpython.com/blog/python/python-for-social-scientists/

T DUNNO..- /
DYNAMIC TYPING? T JUST TYPED
WHITEGRRCE? import Nﬂ'Igmu’fB
/ COME JoNUS! | | THATS 1T?
T LEARNED IT LAST PROGRAIMING ... T ALS0 SAMPLED
NIGHT! EVERYTHING IS FUN AGAIN! EVERYHING IN THE
15 S0 SIMPLE ! ITS A WHOLE MEDICINE CABINET
! NEW WORLD FOR COMPARISON.
HELLO WORLD 15 JusT N UP HERE! (
IPrif‘lf "Hello, UJO!"H!‘ BUT HOW ARE RUT ITHINK THIS
YOU FLYING? IS THE PYTHON.

https://xkcd.com/353/

LEARNING TO CODE WITH PYTHON

15

https://xkcd.com/353/

	Summary
	Why code?
	Basic Concepts
	Counting words
	Improvements
	Appendix - Resources

