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Abstract— KinectFusion is an impressive algorithm that was
introduced in 2011 to simultaneously track the movement of
a depth camera in the 3D space and densely reconstruct
the environment as a Truncated Signed Distance Formula
(TSDF) volume, in real-time. In 2012, we introduced the Moving
Volume KinectFusion method that allows the volume/camera
move freely in the space. In this work, we further develop
the Moving Volume KinectFusion method (as rxKinFu) to fit
better to robotic and perception applications, especially for
locomotion and manipulation tasks. We describe methods to
raycast point clouds from the volume using virtual cameras,
and use the point clouds for heightmaps generation (e.g.,
useful for locomotion) or object dense point cloud extraction
(e.g., useful for manipulation). Moreover, we present different
methods for keeping the camera fixed with respect to the moving
volume, fusing also IMU data and the camera heading/velocity
estimation. Last, we integrate and show some demonstrations
of rxKinFu on the mini-bipedal robot RPBP, our wheeled
quadrupedal robot CENTAURO, and the newly developed full-
size humanoid robot COMAN+. We release the code as an open-
source package, using the Robotic Operating System (ROS) and
the Point Cloud Library (PCL).

I. INTRODUCTION

Three-dimensional (3D) perception is an important tool
for several robotic applications. Apart from understanding
the environment itself, e.g. for inspection purposes, most of
the autonomous locomotion or manipulation tasks require
an accurate knowledge of the surrounding surfaces. Several
exteroceptive sensors have been used in the past for acquiring
3D data, such as LiDAR scanners or stereo, depth, RGB-
D, monocular, and event cameras. There are applications for
which a single frame of data is enough for completing a task.
These methods that use successive unaligned information
have the advantage of time-varying independence, but always
luck the ability to work in areas where the sensor does not
provide all the required data at a particular time-frame due to
the environment conditions, such as lighting or occlusions.
For this reason, the fusion of spatiotemporal camera data
are usually required for accurate perception that provides
useful information. In limbed robotics, this is crucial both
for locomotion and manipulation tasks. For instance, a robot
needs to know the ground under its feet when stepping on
rough terrain. Unless cameras are mounted under its foot
soles, there would always be occlusions between its visual
or range sensors and the terrain under its feet, because of its
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body (legs, arms, etc.). In manipulation, a similar scenario
could be true if an object (for instance a box or a mug) needs
to be seen from multiple views to be grasped.

Aligning and fusing visual or range data has been studied
in the past in the context of sparse Simultaneous Localization
and Mapping (SLAM) [1], where features are extracted in
the environment and the moving camera is tracked based on
them. In 2011, an impressive real-time GPU-based algorithm
for dense 3D reconstruction and mapping, named Kinect-
Fusion [2], was introduced to function on depth cameras,
such as the MS Kinect. The original method was limited in
a 3-by-3 meters volume space, which is relative small for
robotic applications. For this reason, in 2012 we introduced
the Moving Volume KinectFusion algorithm [3], in which
we allowed the volume move freely in the space, following
the depth camera sensor, through a sequence of volume
shifts and remaps. In this way, even though slightly more
computationally expensive, the introduced method allowed
free-roaming use of KinectFusion in fixed memory space.

In this paper, we further extend the original Moving
Volume KinectFusion to the rxKinFu algorithm, that ap-
plies better to robotic applications, such as locomotion or
manipulation. In particular, we first develop three moving
volume policies, that may apply to different tasks. Moreover,
we introduce a raycasting method to extract point clouds,
based on virtual cameras placed in the moving volume. This
is particularly interesting since from the same reconstructed
environment, one can select the viewpoint that applies to the
purpose of the ongoing task. Using the raycasted clouds, the
generation of heightmaps or dense object clouds becomes
easier. In this direction, we also introduce the use of an
IMU sensor mounted on the camera or robot to fuse gravity
information into the volume. This helps in the moving
volume policies. Furthermore, we integrate color in the
reconstructed representation (which was not available in the
original system), which can help with various methods that
require RGB data to work (e.g. deep learning methods).
Last but not least, we integrate rxKinFu into three different
robots, i.e., our mini-bipedal robot RPBP [4], [5], our full-
size wheeled/legged centaur-like robot CENTAURO (www.
centauro-project.eu), and our full-size humanoid
robot COMAN+ (www.cogimon.eu), demonstrating some
3D perceptual methods of our introduced system.

The introduced rxKinFu system was implemented in C++,
runs on GPU, and was integrated into the Robotic Operat-
ing System (ROS), using the Point Cloud Library (PCL).
The code is publicly available as an open-source package:
github.com/RoViL-Team/rxkinfu.

Next, we review the related work (Sec. I-A), followed



by a review of the original KinectFusion algorithm [2] and
our previous moving volume version [3] (Sec. II). Then,
we present our rxKinFu adaptations to the system for 3D
perception and robotic applications (Sec. III), and some
demonstrations on our three legged robots (Sec. IV). Finally,
we conclude with some future research directions.

A. Related Work

Visual SLAM and structure-from-motion methods, were
extensively used over the past few years, such as PTAM [6],
[7], LSD-SLAM [8], ORB-SLAM [9], DSO [10], or RK-
SLAM [11]. Most of these methods use sparse features
(except some, such as the dense DTAM [12]) to drive
either visual odometry or localization/mapping, using visual
cameras with low computational complexity (running usually
in CPUs). The disadvantage of sparsity is that the methods
rely in the existence of features in the environment. A
particular interesting algorithm was the Parallel Tracking and
Mapping (PTAM) method [6] that showed impressive results
using an RGB camera and was used on a walking robot [13].

Visual SLAM based on depth cameras [14]–[19], has also
an increasing interest after the release of cheap depth sensors,
such as the MS Kinect or Xtion ASUS. Moreover, the release
of cheap GPUs have enabled a whole new area in dense real-
time SLAM and reconstruction methods, based on structures
such as the Truncated Signed Distance Formula (TSDF) [20]
or the Octomap [21]. The new technological advances in
the hardware and sensing, led to the introduction of an
impressive system named KinectFusion [2], which was based
on the TSDF surface representation for real-time mapping
and environment reconstruction, for a fixed and relatively
small volume (3 cubic meters). Since then, various methods
were developed for dense mapping, using depth sensors. In
2012, we extended the original KinectFusion method to a
moving volume [3] version that allowed free-roaming camera
movements (rotations and translations), while the Kintin-
uous [22] and the large scale KinectFusion implemented
in PCL [23] worked towards translating the volume. Since
then, several works are using the concept of KinectFusion
for different applications. For instance, BundleFusion [24]
was developed towards improving the accuracy of the fusion,
DynamicFusion [25] towards the reconstruction and tracking
of non-rigid scenes, and ScemanticFusion [26] and DA-
RNN [27] towards incorporating object semantics into the
reconstruction and tracking.

Our intention is to extend our previously introduced
method [3] to more robotic/perception applications. Vi-
sual SLAM has been already used in the past on legged
robot locomotion and mapping, based on sparse visual fea-
tures [28]–[30]. There are various works that used KinectFu-
sion as black box for legged robot applications. For instance,
the original KinectFusion or subsequent methods, such as
Kintinuous, have been used for humanoid robot locomo-
tion [31]–[35]. We intent to provide a free-roaming method,
that fuses also IMU data, for legged robot applications, such
as locomotion or manipulation.

II. KINECTFUSION REVIEW
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Fig. 1. The voxelized Moving Volume KinectFusion space representation,
with the volume transformation frames over time in the initial/world frame.

As mentioned before, the original KinectFusion [2] algo-
rithm works using the Truncated Signed Distance Formula
(TSDF) method [20] within a 3D volume structure. The
whole volume splits into a fixed amount of voxel grids
v, e.g. 5123 voxels of 3 cubic meters of physical volume
space. For each voxel v, two numbers are saved; the signed
distance to the closest physical surface d (negative values
mean that the cell is behind a surface with respect to the
camera) and a weight w that represents the confidence of the
distance. For time/space efficiency, only the truncated values
are stored, i.e., only cells close to surfaces (−T < d < T ,
for T = 3cm) hold values, whereas the rest are either not-
initialized (w = d = 0) or empty (T = d). The input
data is a sequence of depth images, from which the camera
pose is computed with the Generalized Iterative Closest
Point (GICP) [36] method. Through a highly parallelized
implementation, every cell is updated (both the distance d
and the confidence w) by projecting each new depth image
into the volume space. Thus, both camera tracking (camera-
to-volume transformation: Ct in frame t) and data fusion
(distance/confidence updates) are achieved simultaneously.
The original algorithm runs in 30fps, using 512 GPU cores
for the MS Kinect range sensor and only depth information.
Notice that point clouds could be downloaded from the GPU,
using either marching cubes or ray-casting where through
zero crossing. The KinectFusion original results were very
impressive and worked great for small physical spaces.

A. Moving Volume KinectFusion

In [3], we introduced a tweak in the original method, by
allowing free-roaming of the camera, introducing the Moving
Volume KinectFusion algorithm (Fig. 1). The main difference
with the original method is that the volume moves freely
with the camera into the space, through a set of volume
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Fig. 2. The original Moving Volume KinectFusion, with the raycasted point cloud from the real camera frustum, compared to the original fixed volume
KinectFusion algorithm. The data come from a rocky trail that was crossed with a MS Kinect range sensor, with the instance after 1.5m walking.

shifts/remaps and fast TSDF interpolations, providing also a
global camera pose Cg in the world frame. The position of
each volume is saved as a rigid transformation Pi (volume i
to i− 1), so one can track the camera movement in time:

Cg = P0 · · · PtCt

The interesting part of the moving volume version is that
when the camera pose (i.e., the distance ld and angle αd dif-
ference from the starting pose in the current volume) inside a
volume exceeds a distance and an orientation threshold, lmax

and αmax, respectively, the volume is shifted/remapped. If
only translation is required, then the volume shifts with an
easy per-plane memory shift. When both translation and
orientation needs to change for the new volume, then a total
volume remap/reslicing takes place. When one cell from the
previous volume is remapped exactly to an other cell in the
new volume, then the mapping is straightforward, whereas
when it is mapped to multiple new cells, then an interpolation
is required. We introduced a fast trilinear TSDF interpolation,
that keeps the performance of the method in good quality.
The system works in 30fps, and only during remapping it
drops to 15fps on a GPU. A result of the Moving Volume
KinectFusion method, compared to the original one is shown
in Fig. 2, where the raycasting takes place from the viewpoint
of the original real camera. One can see that when the
volume is not shifting/rotating and the physical real camera
is reaching the volume’s end, the raycasted point clouds
disappear. This is not the case with the moving volume
version.

III. MOVING VOLUME KINECTFUSION FOR 3D
PERCEPTION AND ROBOTICS

The intention for the moving volume KinectFusion de-
velopment is the ability to function on robotic systems for
3D perception when manipulating or walking in the environ-
ment. A free-roaming volume could let a moving robot keep
dense information only about the local environment around
it, while tracking its pose to a world frame. Though, in [3]
we left several open directions to achieve this performance
that we try to cover in this work with the newly introduced
rxKinFu system.

A. Task-based Remapping Strategies

Originally, the initial camera pose was centered behind the
volume. When the distance (lmax) and orientation (αmax)
thresholds were met, the volume shifting/remapping was
taking place. In this work, we extend this by introducing
three different task-relevant strategies for the camera pose
inside the volume. First, we define the TSDF volume’s frame
to be at its upper-left-back corner (Fig. 1), with the x, y,
and z axes towards right, down, and forward directions, cor-
respondingly. We have implemented the following moving
volume policies, given a down vector vd (e.g. the gravity
vector) and a forward vector vf (e.g. the direction of the
camera movement).

The goal is to determine the rotation matrix Rvol and the
translation vector tvol from the new volume frame to the old
one, i.e. Pi = [Rvol,i | tvol,i] from volume i to i − 1. The
identity transformation denotes no change/movement.
• Fix Volume (fv): In this case the volume is not moving

at all, as in the original KinectFusion algorithm.
• Fix Camera in Volume (fcv): Transform the volume

(rotate and translate) as needed, to keep the camera
at its initial pose relative to the volume frame. To
do that, we need to factor the current camera pose
[RCcurr | tCcurr] into the initial camera transform
[RCinit | tCinit] followed by the volume transform:

Rvol = RCcurrR
−1
Cinit (1)

tvol = tCcurr −RvoltCinit (2)

• Fix Down and then Forward in the Volume (fdv):
First, rotate the volume to keep its +y-axis direction
parallel to a specified down vector, and then orient
its +z-axis as close as possible to a specified forward
vector. The volume is also automatically translated to
keep the camera at its initial location. To do that, we
let the volume rotation matrix be formed from the
following column-wise vectors:

Rvol = [vd | vf | vf × vd] (3)

For the volume translation vector we need to factor
the current camera pose [RCcurr | tCcurr] into a new
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Fig. 3. Left: the proposed rxKinFu TSDF volume, with the 6 virtual bubble camera frustums and the gravity/down vector. Middle: the raycasted point
cloud from the down virtual bubble camera after traversing 2m of the trail, using the “Fix Down and then Forward in the Volume (fdv)” strategy and using
the gravity as the down vector from an IMU sensor. Right: the raycasted point cloud from the original Moving Volume KinectFusion method.

camera pose [R′Ccurr | t′Ccurr]:

[R′Ccurr | t′Ccurr] = [R′Ccurr | tCinit]

followed by the volume transformation:

[RCcurr | tCcurr] = [Rvol | tvol] ∗ [R′Ccurr | tCinit]

Now, the two unknowns are the translation part of the
volume transformation tvol and the rotation part of the
new camera pose R′Ccurr:

RCcurr = RvolR
′
Ccurr ⇒ R′Ccurr = RT

volRCcurr

tCcurr = RvoltCinit + tvol

The last is resulting to:

tvol = tCcurr −RvoltCinit (4)

• Fix Forward and then Down in the Volume (ffv):
First, rotate the volume to keep its +z-axis direction
parallel to a specified forward vector, and then orient
its +y-axis as close as possible to a specified down
vector. The volume is also automatically translated to
keep the camera at its initial location. Following the
same methodology as fdv, we have that:

Rvol = [vr := vf × vd | vd | vd × vr] (5)
tvol = tCcurr −RvoltCinit (6)

These strategies provide several options for the moving
volume configuration over time, depending on the robotic
task to be completed. For instance, a simple option is to
have the moving volume down and forward vectors fixed to
the default +y (mvfd) and +z (mvff) axes of the starting
volume configuration.

More interestingly, we have implemented three more op-
tions. The first one (downgrav) sets the moving volume
down vector (vd) equal to the gravity vector, acquired from
an IMU mounted on the camera sensor or robot. This is
particularly interesting during locomotion in rough terrain,
where heightmaps of the environment need to be generated
and the horizontal plane is required (see later Fig. 6 in
Sec. IV, where the RPBP robot is using this to acquire point
clouds for stepping). The second option (headvel) estimates

the forward vector (vf ) as the recent camera velocity, while
the third option as the camera’s +z-axis vector (see later
Fig. 8 in Sec. IV, where the CENTAURO robot is using
this to acquire point clouds for manipulation). One can set a
threshold and a weight to control a running average filter for
these estimations. These options are particularly interesting
during navigation, when the camera-view information is
important. An example of the “Fix Down and then Forward
in the Volume (fdv)” and “downgrav” options is given in
Fig. 3.

IMU Integration: Notice, that the integration of the IMU
on the range sensor is of high interest, since one can use it as
the down vector (vd) for applications that require the robot in
a standing mode, such as locomotion. There are systems such
as the CMU Multisense-SL, that visual/range sensors and
IMUs come calibrated from the factory. Although, there are
cases where these sensors are separated or their relative pose
needs to be re-calibrated. To calculate the transformation
between the range sensor and a mounted IMU on it, we
collect several depth and gravity data from the IMU. Then,
for each pair we calculate the dominant plane to extract the
normal vector of the point cloud generated from the depth
image. For each plane normal and gravity vector we solve the
Procrustes problem [37] to get the transformation between
the sensors.

B. Raycasting based on Virtual Bubble Cameras

A very important adaptation that we propose in this paper,
is about the method that point cloud raycasting from the
TSDF volume takes place. Originally, the default option
was to raycast from the real camera view-point. This is a
reasonable approach for several applications, but in robotics
there are cases that different type of raycasting needs to
be applied. For instance, when a robot is locomoting on
a terrain, it is preferable to have a raycasting view-point
from top-down (potentially in the direction of the gravity
vector), so that it can easily see “under” its feet and build a
heightmap for planning. As long as the robot has moved in
the terrain and the voxels of the TSDF volume have already
stored some surface information, accumulating data from the
previous frames, it is not possible to produce point clouds



Fig. 4. Left: the raycasted RGB point cloud, from the bubble virtual
camera. Right: the depth image of the scene from the real camera.

near the robot feet, raycasting from the real camera view-
point if it is not looking towards that direction. On the other
side, if the purpose of the robot is to manipulate objects, it
may need to change strategy and apply raycasting in a way
that a dense set of points on the object is extracted from
different view points. For this reason, we introduce a birds-
eye view raycasting, based on a set of six virtual bubble
cameras. These bubble cameras cover in total the full space
around their center of projection (see Fig.3-left).

To define a virtual bubble camera, we let its reference
frame be axis-aligned with the frame of the TSDF volume,
with the only difference that its z-axis is pointing down-
wards. We also let the center of projection be at a fixed
offset distance bo above the location of the real camera sensor
(see Fig.3-middle). The selection of this offset depends
on the details of the environment that are required from
the robot. Moreover, we allow a variation in the virtual
camera width/height dimensions bd. The resolution depends
on the robotic task to be completed. For instance, to build a
heightmap for obstacle collision avoidance, a sparse equally
distributed set of points are enough, whereas an object repre-
sentation may need more dense points. To control further the
graphical rectangular prism “bubble” that moves with the real
camera, the resolution of the six bubble faces (bottom, front,
left, right, back, top) is defined by two values. Each face
size (bs) and resolution (br) defines the frustum of the virtual
camera with center of projection at the bubble reference point
if and only if the corresponding bubble resolution is positive.
In this case, the width and height of the the camera in pixels
is given by multiplying the face dimensions in meters times
the corresponding face resolution.

In terms of visualization, we have implemented the op-
tion to display the bubble prism and the bubble camera
frustum. Moreover, one can extract and display the raycast
points/meshes for the enabled bubble frustum. Last but not
least, we have integrated color inside the TSDF volume, by
fusing the color values in each iteration in the GPU, which is
an option that was not implemented in the previous version
of the system (see Fig. 4).

IV. ROBOTIC APPLICATIONS
We have implemented the rxKinFu system as an open-

source ROS package, to allow robotic and perception re-
searchers use it on their robots for various tasks. To demon-
strate this capability, we show an integration of the package
on three different robotic systems, using RGB-D range
sensors (Primesense Carmine 1.09, Kinect v1, and ASUS
Xtion PRO): 1) a mini-biped (RPBP), 2) a centaur-like
legged/wheeled quadruped (CENTAURO), and 3) a full-size
humanoid (COMAN+), visualized in Fig. 5. To show the
visual rxKinFu capabilities on the robots, we first run a
stepping experiment on the RPBP robot, then three monitor-
ing experiments on the CENTAURO, and a final monitoring
experiment on the COMAN+ robot (Fig. 6–Fig. 9).

Fig. 5. The three robots, used in the experiments: 1) the mini-biped RPBP,
2) the quadruped CENTAURO, and 3) the humanoid COMAN+.

On the RPBP mini-biped robot, we tested the capability
of rxKinFu to generate raycasted point clouds close to the
feet of the robot for the purpose of rock stepping. Notice
that we used the method of detecting contact surfaces from
point clouds, appropriate for stepping, that we introduced
in [38]. In Fig. 6 the sequence of moves for the robot are
visualized. Initially, the robot is standing and bends over
to look down the ground. When a surface appropriate for
stepping is recognized in the point cloud the robot moves
statically to place its foot on the contact surface (i.e. a rock).
For the rxKinFu options, we let the down vector be the
gravity one, coming from the IMU which was mounted on
the RGB-D sensor of the robot, while we let the bo distance
between the real camera and the bubble frustum be two times
the robot’s height. We also used the “Fix Down and then
Forward in the Volume (fdv)” option with the down face of
the virtual bubble camera acquiring 200px2. The result of
using the virtual camera above the robot instead of the real
camera view-point is visualized in Fig. 6, allowing the robot
to see around its feet and perform the rock stepping task.

On the CENTAURO robot, we firstly tested the capability
to generate raycasted point clouds using different faces of
the virtual bubble cameras in different resolutions. In this
way, we were able to generate dense point clouds of objects
or sparser heightmaps of the ground, from different view-
points. Moreover, we tested the capabilities of the raycasting,
by tweaking the position of the bubble frustum. Last, we
tested the use of the gravity vector (downgrav) and the
camera velocity (headvel) for the fdv and ffv moving volume
strategies. In particular, for experiment 1 (Fig. 8-left) we set a
table with two drills and we manually drive the robot towards
the objects, moving forward/backward/sideways using its



Fig. 6. The sequence of RBPB moves for acquiring and raycating point clouds around its feet using the rxKinFu method. The down face of the virtual
bubble camera is activated with 200px2 resolution and used with the fdv moving volume strategy.

wheels. With a simple whole-body Cartesian interface to
control the orientation of its Center-of-Mass (CoM), we
also tried some small CoM movements. The real camera
was horizontal to the ground, facing almost forward. We
used the “Fix Forward and then Down in the Volume (ffv)”
option with the front face of the virtual bubble camera
acquiring a dense 400px2 cloud. In Fig. 8-left, one could see
the nicely raycasted dense point clouds of the drills, using
the virtual front bubble camera. Similarly, for experiment 2
(Fig. 8-right) we set some bricks on the ground and we tried
similar robot moves as before. Since the camera was heading
forward, we had to place the bubble frustum higher and
further behind the real camera frame, so that the raycasted
point cloud can be extracted, using the down face of the
virtual bubble camera. We used also the down (i.e. gravity)
vector to align the bubble frustum to the ground in a way
that it was straightforward, with a sparse 200px2 raycasted
point cloud to extract directly the corresponding heightmap
in real-time. The latter is visualized in Fig. 8-right. Last, for
experiment 3 (Fig. 9) we set both the drills on the table and
the bricks on the ground and we let CENTAURO roll for
a slightly bigger distance, with its real camera facing 45deg
downwards. The “Fix Down and then Forward in the Volume
(fdv)” strategy is used during volume movements, while the
face down virtual bubble camera is raycasting 400px2 point
clouds. The captured instance in Fig. 9 is notable, since the
robot has traversed some distance and stands in front of the
bricks, but the raycasted cloud appears also under its feet
(something that is not visible from the real camera view-
point), giving visual capabilities to the robot for locomotion.

Last but not least, for the COMAN+ experiment (Fig. 7)
we let the robot make a predefined bending move (similar to
those for picking up boxes from the ground) and we tested
the ability to raycast dense (400px2) or sparse (100px2) point
clouds of the box/debris in front of it in real-time, by ignoring
also some small dynamic movements of the arms in the
scene.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we presented the development of rxKinFu,
which is the a modified Moving Volume KinectFusion algo-
rithm for robotics and 3D perception. We integrated different
strategies for remapping the moving volume over time and
new ways on raycasting point clouds from the TSDF volume
based on virtual cameras. We released the system as an

Fig. 7. The experimental results on the COMAN+ humanoid robot, includ-
ing the TSDF volume, the depth image from the real camera view-point, the
reconstructed information from the TSDF voxels, and two raycasted point
clouds from the virtual down face of the bubble camera, with different
resolutions (100px2 sparse and 400px2 dense).

open-source package in ROS, while we applied the method
on three different robotic systems: a mini-biped for rock
stepping, a legged/wheeled quadruped and a humanoid for
scene inspection. We plan to extend this method further
and integrate it to other EKF-based IMU/Kinematics state
estimators on our robots, while more complicated locomo-
tion/manipulation tasks, such as rock hiking or tool manip-
ulation is our next goal for this system. Last but not least,
we plan in extending the method to sensors other than the
standard RGB-D ones (Kinect or ASUS) that were used in
this work.
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[24] A. Dai, M. Nießner, M. Zollöfer, S. Izadi, and C. Theobalt, “BundleFu-
sion: Real-time Globally Consistent 3D Reconstruction using On-the-
fly Surface Re-integration,” ACM Transactions on Graphics (TOG),
vol. 36, no. 4, 2017.

[25] R. A. Newcombe, D. Fox, and S. M. Seitz, “DynamicFusion: Recon-
struction and Tracking of Non-rigid Scenes in Real-time,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2015, pp. 343–352.

[26] J. McCormac, A. Handa, A. Davison, and S. Leutenegger, “Seman-
ticFusion: Dense 3D Semantic Mapping with Convolutional Neural

Networks,” in IEEE International Conference on Robotics and Au-
tomation (ICRA), 2017, pp. 4628–4635.

[27] Y. Xiang and D. Fox, “DA-RNN: Semantic Mapping with Data
Associated Recurrent Neural Networks,” in Robotics: Science and
Systems (RSS), 2017.

[28] A. Hornung, S. Bttcher, J. Schlagenhauf, C. Dornhege, A. Hertle,
and M. Bennewitz, “Mobile Manipulation in Cluttered Environments
with Humanoids: Integrated Perception, Task Planning, and Action
Execution,” in IEEE-RAS International Conference on Humanoid
Robots, 2014, pp. 773–778.

[29] M. Fallon, P. Marion, R. Deits, T. Whelan, M. Antone, J. McDonald,
and R. Tedrake, “Continuous Humanoid Locomotion over Uneven Ter-
rain using Stereo Fusion,” in 15th IEEE-RAS International Conference
on Humanoid Robots (Humanoids), 2015, pp. 881–888.

[30] T. Laidlow, M. Bloesch, W. Li, and S. Leutenegger, “Dense RGB-D-
inertial SLAM with Map Deformations,” in IEEE/RSJ Int. Conference
on Intelligent Robots and Systems (IROS), Sept 2017, pp. 6741–6748.

[31] O. E. Ramos, M. Garca, N. Mansard, O. Stasse, J.-B. Hayet, and
P. Soures, “Toward Reactive Vision-Guided Walking on Rough Ter-
rain: An Inverse-Dynamics Based Approach,” International Journal of
Humanoid Robotics, vol. 11, no. 02, p. 1441004, 2014.

[32] P. Marion, “Perception Methods for Continuous Humanoid Locomo-
tion Over Uneven Terrain,” Ph.D. dissertation, 2016.

[33] A. Tanguy, P. Gergondet, A. I. Comport, and A. Kheddar, “Closed-
loop RGB-D SLAM Multi-contact Control for Humanoid Robots,” in
IEEE/SICE International Symposium on System Integration (SII), Dec
2016, pp. 51–57.

[34] R. Scona, S. Nobili, Y. R. Petillot, and M. Fallon, “Direct Visual
SLAM Fusing Proprioception for a Humanoid Robot,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Sept 2017, pp. 1419–1426.

[35] A. Rioux and W. Suleiman, “Autonomous SLAM Based Humanoid
Navigation in a Cluttered Environment while Transporting a Heavy
Load,” Robotics and Autonomous Systems, vol. 99, pp. 50 – 62, 2018.

[36] A. Segal, D. Hhnel, and S. Thrun, “Generalized-ICP,” in Robotics:
Science and Systems, J. Trinkle, Y. Matsuoka, and J. A. Castellanos,
Eds. The MIT Press, 2009.

[37] D. Eggert, A. Lorusso, and R. Fisher, “Estimating 3-D Rigid Body
Transformations: a Comparison of Four Major Algorithms,” Machine
Vision and Applications, vol. 9, no. 5, pp. 272–290, 1997.

[38] D. Kanoulas, C. Zhou, A. Nguyen, G. Kanoulas, D. G. Caldwell, and
N. G. Tsagarakis, “Vision-based Foothold Contact Reasoning using
Curved Surface Patches,” in IEEE-RAS 17th International Conference
on Humanoid Robotics (Humanoids), 2017, pp. 121–128.


