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ABSTRACT
In Model-Driven Engineering, the potential advantages of using
bidirectional transformations in various scenarios are largely rec-
ognized; as for instance, assuring the overall consistency of a set of
interrelated models which requires the capability of propagating
changes back and forth the transformation chain.

Among the existing approaches, JTL (Janus Transformation
Language) is a constraint-based bidirectional transformation lan-
guage specifically tailored to support change propagation and non-
deterministic transformations. In fact, its relational and constraint-
based semantics allows to restore consistency by returning all ad-
missible models. This paper introduces the new implementation of
the language and presents the tools and its features by means of a
running example.

CCS CONCEPTS
• Software and its engineering → Software notations and
tools;
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1 INTRODUCTION
In Model Driven Engineering (MDE), bidirectional model transfor-
mations are considered a core ingredient for managing both the
consistency and synchronization of two or more related models.
Their relevance has been advocated by a number of approaches that
have been proposed due to the intrinsic complexity of bidirectional-
ity. Each one of those languages is characterized by a set of specific
properties pertaining to a particular applicative domain [4, 9].

An aspect which is still largely underestimated is the multiplicity
of solutions: if the forward mapping of a bidirectional transforma-
tion is non-bijective, i.e., it maps two distinct models to the same
target model, then the corresponding backward mapping must
be a one-to-many mapping (non-determinism) [6]. Consequently,
since current languages are able to generate only one model, non-
deterministic transformations involved in round-tripping can give
rise to results, which are somewhat unpredictable. In these cases,
the solution is normally identified according to heuristics or to
the order the rules are written [16, 17]. A typical example is the
Collapse/Expand State Diagrams benchmark defined in [3]: start-
ing from a hierarchical state diagram (involving some one-level
nesting), a flat view has to be provided. Then adding a transition
between two flatten states cannot be back-propagated in a unique
way, since the corresponding transition in the hierarchical state di-
agram can be added to any nested states as well as to the container
state itself.

The Janus Transformation Language (JTL) [2, 6] is a constraint-
based model transformation language specifically tailored to sup-
port bidirectionality and change propagation. Its relational seman-
tics relies on a constraint solver to find a consistent choice for the
other source; there might be multiple choices. Thus, the responsi-
bility of choosing the right model among the generated ones is left
to the designer.

The development of JTL started in 2010 with major goal includ-
ing the specification of bidirectional transformations within the
engine based on Answer Set Programming (ASP) [7]. Its prototype
version was presented in [2] as a set of independent Eclipse plugins
for academic use. Recently, there has been a lot of progress in the
Eclipse Modeling Framework (EMF) 1 and it has established itself as
a de facto standard, offering stable and well-tested components. We
are convinced to reengineering the existing features and integrate
them in a dedicated Eclipse product. In particular, the Eclipse Rich
Client Platform (RCP) 2 has been used as a basis to create a feature-
rich stand-alone application. Going in more details, the following
improvements have been realized: the semantic anchoring between
the JTL syntax and the ASP engine is completely restructured using
ATL [10] and EMFText 3 technologies; the existing transformation
and traceability engines have been modified to solve shortcom-
ings that emerged from test cases; the DLV solver system [13] has
been updated and integrated in the overall environment to provide
interoperability with EMF; moreover, usability, performance and
multi-platform support have been also improved in the process.
This paper presents the new tool for JTL 4 by using a running
example.

The paper is organized as follows. Sect. 2 presents how bidirec-
tional transformations can be specified within the JTL tool. Sect. 3
describes the JTL engine and its semantics. Sect. 4 show the tool in
practice by executing an example. Finally, Sect. 5 describes related
work and Sect. 6 draws some conclusion and future work.

2 JTL BIDIRECTIONAL TRANSFORMATIONS
Within the JTL tool, models and metamodels can be described by
exploiting the EMF environment. Whereas, bidirectional transfor-
mations can be specified in a textual way by using the JTL syntax.

By considering theCollapse/Expand State Diagrams benchmark [3],
List. 1 shows a fragment of the HSM2SM bidirectional transfor-
mation, which relates hierarchical and flat state machines one
with another. JTL adopts a QVT-R like syntax to specify a num-
ber of relations among elements of the two involved domains. In
particular, the Line 1 of the listing declares the variable hsm that
matches models conform to the metamodel HSM and the variable sm

1EMF: https://www.eclipse.org/modeling/emf/
2Eclipse RCP: https://wiki.eclipse.org/Rich_Client_Platform
3EMFText: http://www.emftext.org
4JTL Tool: http://jtl.di.univaq.it/

https://www.eclipse.org/modeling/emf/
https://wiki.eclipse.org/Rich_Client_Platform
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http://jtl.di.univaq.it/


that matches models conform to the metamodel SM. The relation
StateMachine2StateMachine in Lines 2-13 relates state machines in
the different metamodels. The when and where clauses specify pre-
and post-conditions on the relation. In particular, the where clause
in Lines 7-12 invokes a set of relations that are held if the calling re-
lation is enforced. For instance, the relation ownedState2ownedState,
declared in Lines 14-24, defines a correspondence between the ref-
erence ownedState of type State belongs to the hierarchical domain
and the reference ownedState of type State belongs to the flat do-
main. Note that, the states have the same variable name (s) and the
relation State2State(s,s) is invoked in the where clause. It means
that if a state machine have a reference to a state s in the source do-
main, a correspondent reference to a state s must be created in the
target domain; the correspondent state s is created by enforcing the
relation State2State. Similarly, the relation CompositeState2State

relates composite states of the hierarchical domain to state in the
flat domain, and vice-versa. Note that, the two relations State2State
and CompositeState2State make the transformation non-injective.
In fact, in the backward direction an object of type State may be
equally mapped to objects of type State or CompositeState.

1 transformation HSM2SM(hsm : HSM , sm : SM) {

2 top relation StateMachine2StateMachine {

3 enforce domain hsm hm : HSM:: StateMachine { };

4 enforce domain sm m : SM:: StateMachine { };

5 where {

6 ownedState2ownedState(hm,m);

7 ownedCompositeState2ownedState(hm,m);

8 ownedTransition2ownedTransition(hm,m);

9 ...

10 }

11 }

12 relation ownedState2ownedState {

13 enforce domain hsm hm : HSM:: StateMachine {

14 ownedState = s : HSM::State { }

15 };

16 enforce domain sm m : SM:: StateMachine {

17 ownedState = s : SM::State { }

18 };

19 where {

20 State2State(s,s);

21 }

22 }

23 relation State2State {

24 varName : String;

25 enforce domain hsm hs : HSM::State {

26 name = varName

27 };

28 enforce domain sm s : SM::State {

29 name = varName

30 };

31 }

32 relation ownedCompositeState2ownedState {

33 ...

34 }

35 relation CompositeState2State {

36 varName : String;

37 enforce domain hsm hs : HSM:: CompositeState {

38 name = varName

39 };

40 enforce domain sm s : SM::State {

41 name = varName

42 };

43 }

44 ...

45 relation ownedTransition2ownedTransition {

46 ...

47 }

48 relation Transition2Transition {

49 varTrigger : String;

50 varEffect : String;

51 enforce domain hsm ht : HSM:: Transition {

52 trigger = varTrigger ,

53 effect = varEffect

54 };

55 enforce domain sm t : SM:: Transition {

56 trigger = varTrigger ,

57 effect = varEffect

58 };

59 where {

60 TransitionSource2TransitionSource(ht, t);

61 TransitionTarget2TransitionTarget(ht, t);

62 TransitionSourceComposite2TransitionSource(ht, t);

63 TransitionTargetComposite2TransitionTarget(ht, t);

64 TransitionTargetIntoComposite2TransitionTargetComposite(

ht, t);

65 }

66 }

67 relation TransitionSource2TransitionSource {

68 enforce domain hsm ht : HSM:: Transition {

69 source = s : HSM::State { }

70 };

71 enforce domain sm t : SM:: Transition {

72 source = s : SM::State { }

73 };

74 when {

75 State2State(s, s);

76 }

77 }

78 relation TransitionTarget2TransitionTarget {

79 enforce domain hsm ht : HSM:: Transition {

80 target = hs : HSM::State { }

81 };

82 enforce domain sm t : SM:: Transition {

83 target = s : SM::State { }

84 };

85 when { State2State(hs, s); }

86 }

87 relation TransitionSourceComposite2TransitionSource {

88 ...

89 }

90 relation TransitionTargetComposite2TransitionTarget {

91 ...

92 }

93 relation TransitionTargetIntoComposite2TransitionTarget

94 Composite {

95 enforce domain hsm ht : HSM:: Transition {

96 target = hs : HSM::State {

97 owningCompositeState = s:HSM:: CompositeState { }

98 }

99 };

100 enforce domain sm t: SM:: Transition {

101 target = s : SM::State { }

102 };

103 when { CompositeState2State(s,s); }

104 }

105 ...

106 }

Listing 1: A fragment of the HSM2SM transformation

Thereafter, the Transition2Transition in Lines 51-69 relates tran-
sitions in the two different metamodels. The where clause invokes a
list of relations that have the scope to set the correspondent source
and target elements of the transitions. For instance, the relation
TransitionSource2TransitionSource involves transitions of the two
metamodels and relates their references source of type State. The
relation is constrained by means of the when clause; it implies that
only states that have been generated from the relation State2State

are considered (it allows to exclude sub-states). Finally, the relation
TransitionTargetIntoComposite2TransitionTargetComposite man-
ages the case in which the target of a transition refers to a sub-state
and must be mapped in a correspondent transition that targets the
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state that correspond to the composite state that the sub-state be-
longs to. Even in this case, the relations involving transitions may
cause multiple solutions when the transformation is executed in
backward direction; in fact, a transition that involves a state can be
equally mapped in a transition that involves a state or a composite
state.

The described relations are bidirectional, in fact both the con-
tained domains are specified with the construct enforce.

3 JTL ENGINE AND SEMANTICS

The JTL engine is based on a relational and declarative approach
implemented using ASP, that is a form of declarative programming
oriented towards difficult (primarily NP-hard) search problems and
based on the stable model (answer set) semantics of logic program-
ming. The approach exploits the benefits of logic programming that
enables the specification of relations between source and target
types by means of predicates, and intrinsically supports bidirec-
tionality [4] in terms of unification-based matching, searching, and
backtracking facilities. More precisely, model transformations spec-
ified in JTL are transformed into ASP programs (search problems),
then an ASP solver is executed to find all the possible stable models
that are sets of atoms consistent with the considered rules and
supported by a deductive process.

Fig. 1 depicts the overall environment supporting the execution
of JTL transformations. The JTL engine is written in the ASP lan-
guage and makes use of the DLV solver to execute transformations
in both forward and backward directions. The engine executes JTL
transformations which have been written in a QVT-like syntax, and
then automatically transformed into ASP programs (see the map
arrows in Fig. 1). Such a semantic anchoring has been implemented
in terms of an ATL transformation defined on the JTL and ASP
metamodels. Moreover, the source and target metamodels of the
considered transformation (MM1,MM2) are automatically encoded
in ASP and managed by the engine during the execution of the
considered transformation and to generate the output models.

Starting from the encoding of the involved metamodels and
the source model M1 5, the representation of the target one (M2)
is generated according to the JTL specification (see the serialize
and deserialize arrows). The execution of the backward direction
is performed by giving as input the obtained M2 and optionally
the trace model TM2. Thus, the correspondentM1 is re-generated
together with the related trace model TM1. Note that, trace models
are generated during the execution and each one refers to a specific
execution and is related to a specific solution model. That is, in
case of multiple solutions, multiple trace models (one for model)
are generated.

Model transformation execution. Going in more details, the
computational process is performed by the JTL engine (as depicted
in Fig. 1) which is based on the ASP program obtained from the
given JTL specification. It is composed of i) rules which describe
mappings and correspondences among element types of the source
and target metamodels, and ii) constraintswhich specify restrictions
5Note that, since JTL provides declarative specifications, the role of source and target
models is determined at execution time

on the given relations that must be satisfied in order to execute
the corresponding mappings. The transformation process logically
consists of the following steps:
1) given the input metamodels and the input model (that is the
stable model), the execution engine induces all the possible solution
candidates (answer sets) according to the specified rules; 2) the set
of candidates is refined by means of constraints.

The invertibility of transformations is obtained by means of trace
information that connects source and target elements. Traceability
can be considered as an intrinsic property of ASP, in fact each
obtained answer set is composed of elements that are explicitly
derived from elements of the initial stable model. In essence, tracing
information describes how a target element has been generated
starting from a source one.

Furthermore, elements involved in non-bijective relationships
(that are source of non-determinism) can be maintained bymeans of
tracing information. For instance, if we consider the backward exe-
cution of theHSM2SM transformation and the relations State2State
and CompositeState2State, thus a state in the sm domain can be
translated and linked in both a state or a composite state in the
hsm domain. Exploiting this, during the transformation process,
the relationships between models that are created by the transfor-
mation executions can be stored to permanently preserve mapping
information.

Finally, all the source elements lost during the forward trans-
formation execution (for example, due to the different expressive
power of the metamodels) are stored in tracing information in order
to be generated again in the backward transformation execution.

Constraining the solution space. The number of alternatives that
we may obtain depends on the intrinsic characteristics of the trans-
formation and on the model elements which are matched by the
non-bijective rules. In other words, the number of alternatives de-
pends on the degree of non-determinism of the involved model
transformations. As said above, the execution engine may generate
a large number of alternatives when only the information encoded
in the transformation is used. The constraints play a key role in
the transformation process. In particular, transformations can be
mapped into logical rules which are constrained by context infor-
mation which consistently narrow the solution space to only those
models which are relevant.

The answer sets may be refined in subsequent steps: i) the answer
set is filtered according to the constraints induced by the source
metamodel, ii) the answer set is further reduced by considering
the constraints induced by the tracing information and iii) addi-
tional user-defined constraints can be added to browse the space of
solutions.

The use of constraints may reduce back-tracking because it al-
lows for early detection of dead-ends and permits to reduce the
space of solutions in subsequent steps. In practice, constraints can
be written a posteriori and given as input of the transformation
engine; the designer can decide to use such constraints for a specific
execution or to integrate themwith the transformation specification
itself to avoid discontinuity.

Managing the solution space. Even if adding constraints can help
to discard alternatives, non-determinism may generally cause a
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Figure 1: Overview of the JTL engine

Figure 2: Run configuration (forward execution)

combinatorial explosion of solutions. In order to reduce the bur-
den of managing a collection of models, we adopted an approach
to represent multiple solutions in a intensional manner by adopt-
ing a model for uncertainty [6]. Furthermore, in [5] we proposed
a design-time approach to analyze JTL transformations with the
purpose to detect ambiguities and support designers in solving
non-determinism in their specification.

4 EXECUTION AND RESULTS
In this section we show the execution of the HSM2SM transforma-
tion within the JTL tool 6. We considered the scenario presented
in [2]; starting from the definition of the involved metamodels, the
JTL transformation is specified as described in List. 1). By referring
to Fig. 1, the transformation, the source and target metamodels and
the source model have been created and need to be translated in
their ASP encoding in order to be executed from the JTL engine.

After this phase, the application of the HSM2SM transformation
(the run configuration window is showed in Fig. 2) on the source
model HSM.xmi generates the corresponding target model SM.xmi,
as depicted in Fig. 3. Togheter with the .xmi model, the engine
generates the correspondent ASP encoding SM.aspm and the trace
6The HSM2SM execution is described as a tutorial at http://jtl.di.univaq.it/.

Figure 3: Forward execution of HSM2SM

Figure 4: Run configuration (backward execution)
4
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Figure 5: Backward execution of the HSM2SM transformation in JTL

model SM_trace.aspm. The latter is composed of a set of elements
encoded in ASP with the role to maintain relations between source
and target elements of the execution and store also elements lost
during the transformation or deriving from non-injective mappings.
In fact, by re-applying the transformation in the backward direction
it is possible to obtain again the HSM source model. The missing
sub-states and the transitions involving them are restored by means
of trace information.

Suppose that, in a refinement step, the obtained target model
is manually modified and an updated model SM’.xmi is obtained
as shown in the left part of Fig. 5. In particular, the state Begin

Installation is renamed in Start Install and a new transition
[alternative = try again] between the state Disk Error and the
state Install Software is added.

If the transformation HSM2SM is applied on it (the run con-
figuration window is showed in Fig. 4), we expect changes to be
propagated on the source model. However, as said, target changes
may be propagated in a number of different ways, thus making the
application of the reverse transformation to propose more solutions.
As previously said, the new transition can be equally targeted to
each one of the 3 nested states within Install Software as well as
to the super state itself and also equally sourced to each one of the
4 nested states within Disk Error as well as to the super state itself.
The resulting alternative models are 20.

For sake of legibility, four of the generated sources, namely
HSM’_1/2/3/4, can be inspected through Fig. 5: the change (1) has
been propagated renaming the state to Start Install; the change (2)

has been propagated by creating the new transition, that has been
targeted to each one of the nested states within Install Software

as well as to the super state itself (see the properties HSM’_1/2/3/4
in Fig. 5). For example, as visible in the property of the transition,
HSM’_1 represents the case in which the transition is targeted to the
composite state Install Software. This restriction of the solution
space was possible through the addition of an ASP constraint, a
posteriori. The pseudocode of the constraint that eliminate the
transitions that sources sub-states is as following:

: −sm.Transition(T 1).source(t1).State(S1),
hsm.Transition(T 1).source(t1).State(S2),
hsm.State(S2).owninдCompositeState .CompositeState(S1).

It eliminates all the alternative models such that: a transitionT 1 that
targets the state S1 exists in the sm domain, and also a transition
T1 that targets the state S2 (that is a sub-state of S1) exists in the
hsm domain.

Even in this case, if the transformation is applied on one of the
derived HSM’ models, the appropriate SM’ models including all the
changes are generated. However, this time the target will preserve
information about the chosen HSM’ source model, thus causing
future applications of the backward transformation to generate
only HSM’.

5 RELATEDWORK
Over the last decade, a number of bidirectional approaches and
tools have been proposed. Concerning the multiplicity of solutions,
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most of the existing languages are deterministic, i.e., they produce
one model at time.

The QVT-R bidirectional transformation language [16] does not
supports non-bijective transformations. In [1] a formal discussion
about non-deterministic transformations is given. Despite the heavy
emphasis placed on model transformation by the OMG’s, tool sup-
port for bidirectional transformations expressed in QVT-R remains
limited [14, 15]. Medini QVT 7 is an Eclipse plugin for a subset
of the QVT-R language. Its semantics admittedly disregards the
semantics from the QVT standard (it does not have a checkonly
mode for instance).

Within the available tools for Triple Graph Grammars (TGGs),
eMoflon 8 received wide acceptance and it is one of the most promi-
nent TGG platforms. It features both batch and incremental model
transformations [12]. Moreover, eMoflon proposes to manage non-
determinism by allowing designers to make decisions as early. In
particular, it provides a Java-based API via which the designer can
choose which matches she prefers/prioritises as soon as there are
multiple choices available in the transformation process.

Fully control and therefore completely avoid non-determinism
is recently proposed by the following functional approaches. An
attempt in making bidirectional transformation deterministic by
means of intentional updates is represented by the BiFluX lan-
guage [17], however the problem that a transformation cannot be
tested for non-determinism at static-time reduces its effectiveness.
Recently, BiGUL [11] has been proposed as a revision of the core of
BiFlux, designed to be closer to practical programming languages.
GRoundTram (Graph Roundtrip Transformation for Models) [8]
is an integrated framework for developing well-behaved bidirec-
tional model transformations based on the functional programming
language OCaml. It is a compositional, functional and algebraic
approach based on graph algebra and structural recursion.

Similarly to JTL, in [14] the authors proposes un approach able
to enumerate the possible solutions of a non-deterministic specifi-
cation. The proposed QVT-R tool is based on a SAT solver (Alloy).
In contrast with JTL, it supports metamodels enriched with OCL
constraints to limit the possible edits and control non-determinism;
moreover, the enforcement semantics is based on the principle of
least change. Tool support is available, but development seems to
be discontinued.

6 CONCLUSION AND FUTUREWORK
This paper introduced the improved EMF-based tool for specifying
and execute bidirectional model transformation in JTL. The tool has
been presented bymeans of a non-deterministic round-trip scenario.
As future work we plan to consolidate and extend the tool with new
features. In particular, we are interested in defining a user-friendly
syntax to allow designers to specifies constraints. Then, we plan
to implement EMF-based facility for store and manage traceability
information. Furthermore, we plan to address the issues related to
the management of a multitude of models by integrate within the
tool the following components: (i) representing models as a model
with uncertainty capability and (ii) static bidirectional specification
analyzer to detect non-determinism at design-time.

7Medini QVT: http://projects.ikv.de/qvt
8eMoflon: http://www.moflon.org
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