Performance-Driven Software Architecture Refactoring

Davide Arcelli, Vittorio Cortellessa, and Daniele Di Pompeo
Department of Information Engineering, Computer Science and Mathematics
University of L’Aquila, Italy
{davide.arcelli, vittorio.cortellessa} @univag.it,
daniele.dipompeo @ graduate.univagq.it

Abstract—Performance engineering of software architecture
can be defined as the process of analyzing the performance of a
software architecture and then reacting to problems emerging
from such analysis by refactoring the software architecture in
order to meet performance requirements. In the last decade,
many approaches in this field have appeared, whereas the
problem of reacting to problems by proposing and evaluating
alternative solutions through architectural refactoring has been
much less treated. Indeed, the introduction of automated
support to refactoring becomes crucial to drive architectural
evolutions that might lead to performance improvement. This
tutorial is aimed at introducing notations, methodologies and
tools that can be adopted for Performance-Driven Software
Architecture Refactoring.

Keywords-Software Refactoring; Software Performance En-
gineering; Software Architecture

I. THE TUTORIAL TOPIC

Performance-Driven Software Architecture Refactoring
(PDSAR) can be defined as a discipline that collects ap-
proaches, methodologies, and tools aimed at introducing
performance assessment in the context of software architec-
tures. Figure 1 depicts a PDSAR process and it represents
the context addressed by this tutorial. The process has three
horizontal swimlanes, namely Forward path, Backward path
and Knowledge. The latter contains system and domain
artifacts (e.g. Architecture Under Analysis — AUA - and
Refactoring Library) supporting the process.

The forward path starts with the SAM2PM model-to-
model transformation (e.g. [1]) aimed at generating a per-
formance model from a software architecture. This step is
followed by a Performance Analysis procedure (e.g. [2]) that
carries out the Performance Values of Interest corresponding
to the metrics specified in the knowledge repository.

The obtained performance values are then taken as input
by the first step of the backward path, namely Metric values
integration, which properly fills the AUA with the metric
values, thus obtaining an Annotated AUA. The latter under-
goes a Results interpretation step that uses the knowledge
needed to detect performance problems (e.g., [3]).

The Results Interpretation step produces a list of Per-
formance Problems Occurrences. Based on the latter, an
Architectural feedback generation step is then executed, with
the support of Refactoring Actions knowledge repository.
The result of this step is represented by a set of Architectural

Alternatives that go back to the forward path in order to
be evaluated. Architectural Alternatives that satisfy perfor-
mance requirements and/or that show better performance
than the AUA can thus finally be considered as beneficial
evolutions of the latter.

The whole process is plugged into an Architectural No-
tations frame in Figure 1, which accounts for the different
notations that can be used in different instantiation of the
process. The focus of this tutorial is the backward path and,
consequently, the knowledge supporting it.

II. STATE OF ART

The quality improvement of software architectures is a
problem known to be computationally hard, due to the
typically huge space of feasible solutions, complexity of
architectural notations, heterogeneity/fragmentation of avail-
able methods and tools.In the performance domain, existing
approaches to this problem mostly rely on heuristics and
metaheuristics, while addressing particular architectural no-
tations (as for, e.g., UML-MARTE [4] and AADL [5]) that
often natively support performance analysis (e.g. PCM [6]
and Amilia [7]).

Heuristics that exploit performance antipatterns to specify
performance problems at the architectural level are of par-
ticular interest, since performance antipatterns are patterns
characterising bad design practices that likely jeopardize
performance [8]. However, most of them are limited to au-
tomation of antipatterns detection [3], [9], [6], [7], whereas
there is lack of exploitation of Model-Driven Engineering
techniques to introduce automated support for planning and
applying architectural refactoring actions, possibly based on
antipattern/bottleneck removal [10], [11], [12], [13].

Moreover, a number of more recent studies have demon-
strated the effectiveness of formulating the problem as a
search-based one, and of tackling it via metaheuristics [14].
Several evolutionary algorithms have been introduced, in the
last decade, for software architecture multi-objective opti-
mization with respect to various quality attributes, including
performance [15], and with different degrees of freedom to
modify the architecture [16], [17].

Performance
I = Performance Values I
=1 ode| of Interest
| a |
B |
I E [SAM2PM Performance I
S s Analysis
| w[<£ X |
c 408° -
| S : : |
| ol Architectural e H |
l 5| Alternatives .- : |
z (3 ——— NN S—— —
l = E Refactoring Performance _— |
- 3 Actions Metrics of Performance Problems
l 5 = u - Interest detection rules l
s | S . : Architecture =
I 9] ° N Under Analysis N l
[} 0 o N
| 2 ~ |
¥] Performance
l — = Problems Annotated l
< E Occumences AUA
| a : EAN |
e Architectural r
I 3 feedback a tResu:tst. Metric l
I E e < interpretation values I
integration|
=] integ
[3°] +
b o e e e e . —— —— —— —— — — — — — — — — — —— ————————————]

Figure 1.

III. TARGET AUDIENCE

The potential attendees of this tutorial are researchers and
practitioners that, respectively, are interested to investigate
issues related to this topic and experience performance
problems in their working activity. They will be exposed
to MDE techniques that can be adopted to introduce auto-
mated support to software architecture refactoring driven by
performance. They will also be exposed to the insight that
automation in this process lowers the bar of its applicability,
thus paving the way to the development of solutions that
actually support the performance-driven refactoring.

The basic prerequisites for this tutorial are: software
architecture, basic concepts of performance analysis, model-
driven engineering basics, and pattern/antipattern concepts.

(1]

(2]

(3]

(4]

(5]

(6]

REFERENCES

C. M. Woodside, D. C. Petriu, J. Merseguer, D. B. Petriu, and
M. Alhaj, “Transformation challenges: from software models
to performance models,” Software and System Modeling,
vol. 13, no. 4, pp. 1529-1552, 2014.

G. Casale and G. Serazzi, “Quantitative system evaluation
with java modeling tools,” in /CPE’11, 2011, pp. 449-454.
V. Cortellessa, A. Di Marco, and C. Trubiani, “An approach
for modeling and detecting software performance antipatterns
based on first-order logics.” Software and System Modeling,
vol. 13, no. 1, pp. 391-432, 2014.

D. Arecelli, V. Cortellessa, and C. Trubiani, “Antipattern-based
model refactoring for software performance improvement,” in
QoSA’11, 2011, pp. 33-42.

A. Aleti, S. Bjornander, L. Grunske, and I. Meedeniya,
“Archeopterix: An extendable tool for architecture optimiza-

tion of AADL models,” in MOMPES (ICSE’09), pp. 61-71.
C. Trubiani and A. Koziolek, “Detection and solution of

software performance antipatterns in palladio architectural
models,” in ICPE’11, 2011, pp. 19-30.

(71

(8]

(91

(10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

@ Focus

Context and focus of this tutorial.

M. De Sanctis, C. Trubiani, V. Cortellessa, A. Di Marco,
and M. Flamminj, “A model-driven approach to catch per-
formance antipatterns in ADL specifications,” Information &
Software Technology, vol. 83, pp. 35-54, 2017.

C. U. Smith and L. G. Williams, “Software performance
antipatterns for identifying and correcting performance prob-
lems,” in ICMG’12, 2012.

A. Wert, M. Oehler, C. Heger, and R. Farahbod, “Automatic
detection of performance anti-patterns in inter-component
communications,” in QoSA’14, 2014, pp. 3-12.

J. Xu, “Rule-based automatic software performance diagnosis
and improvement,” Performance Evaluation Journal, vol. 69,
no. 11, pp. 525-550, 2008.

A. Amirat, A. Bouchouk, M. O. Yeslem, and N. Gasmallah,
“Refactor software architecture using graph transformation
approach,” INTECH’12, pp. 117-122, 2012.

D. Arcelli, V. Cortellessa, and D. D. Ruscio, “Applying model
differences to automate performance-driven refactoring of
software models,” in EPEW’13, 2013, pp. 312-324.

D. Arcelli, V. Cortellessa, and D. D. Pompeo, “Performance-
driven software model refactoring,” Information & Software
Technology, vol. 95, pp. 366-397, 2018.

A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Mee-
deniya, “Software Architecture Optimization Methods: A
Systematic Literature Review,” IEEE Trans. on Software
Engineering, vol. 39, no. 5, pp. 658-683, 2013.

A. Koziolek, H. Koziolek, and R. Reussner, “PerOpteryx:
automated application of tactics in multi-objective software
architecture optimization,” in QoSA’11, 2011, pp. 33-42.

F. Rosenberg, M. B. Miiller, P. Leitner, A. Michlmayr,
A. Bouguettaya, and S. Dustdar, “Metaheuristic optimization
of large-scale qos-aware service compositions,” in SCC’I0,
2010, pp. 97-104.

V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti, and
R. Mirandola, “Qos-driven runtime adaptation of service
oriented architectures,” in ESEC/FSE’09. ACM, 2009, pp.
131-140.

