B www.freenove.com 54 support@freenove.com |G

Getting Started

Thank you for choosing Freenove products!
After you download the ZIP file we provide. Unzip it and you will get a folder contains several files and folders.
There are three PDF files:

® Tutorial.pdf
It contains basic operations such as installing system for Raspberry Pi.
The code in this PDF is in C and Python.

® Tutorial_GPIOZero.pdf
It contains basic operations such as installing system for Raspberry Pi.
The code in this PDF is in Python.

® Processing.pdf in Freenove_RFID_Starter_Kit_for_Raspberry_Pi\Processing
The code in this PDF is in Java.

We recommend you to start with Tutorial.pdf first.
If you want to start with Processing.pdf or skip some chapters of Tutorial.pdf, you need to finish necessary
steps in Chapter 7 AD/DA of Tutorial.pdf first.

Remove the Chips

Some chips and modules are inserted into the breadboard to protect their pins.
You need to remove them from breadboard before use. (There is no need to remove GPIO Extension Board.)
Please find a tool (like a little screw driver) to handle them like below:

[Step 1, lift one end slightly.]

[Step 2, lift another end slightly.]

support@freenove.com [l

http://www.freenove.com/
mailto:support@freenove.com

n X4 support@freenove.com www.freenove.com Il

[Step 3, take off the chip with hand.]

Avoid lifting one end with big angle directly.

Get Support and Offer Input

Freenove provides free and responsive product and technical support, including but not limited to:

Product quality issues

Product use and build issues

Questions regarding the technology employed in our products for learning and education
Your input and opinions are always welcome

We also encourage your ideas and suggestions for new products and product improvements

For any of the above, you may send us an email to:

support@freenove.com

Safety and Precautions

Please follow the following safety precautions when using or storing this product:

Keep this product out of the reach of children under 6 years old.

This product should be used only when there is adult supervision present as young children lack
necessary judgment regarding safety and the consequences of product misuse.

This product contains small parts and parts, which are sharp. This product contains electrically conductive
parts. Use caution with electrically conductive parts near or around power supplies, batteries and
powered (live) circuits.

When the product is turned ON, activated or tested, some parts will move or rotate. To avoid injuries to
hands and fingers, keep them away from any moving parts!

It is possible that an improperly connected or shorted circuit may cause overheating. Should this happen,
immediately disconnect the power supply or remove the batteries and do not touch anything until it

B support@freenove.com

http://www.freenove.com/
mailto:support@freenove.com
mailto:support@freenove.com

B vww.freenove.com >4 support@freenove.com _

cools down! When everything is safe and cool, review the product tutorial to identify the cause.

® Only operate the product in accordance with the instructions and guidelines of this tutorial, otherwise
parts may be damaged or you could be injured.

® Store the product in a cool dry place and avoid exposing the product to direct sunlight.

® After use, always turn the power OFF and remove or unplug the batteries before storing.

About Freenove

Freenove provides open source electronic products and services worldwide.

Freenove is committed to assist customers in their education of robotics, programming and electronic circuits
so that they may transform their creative ideas into prototypes and new and innovative products. To this end,
our services include but are not limited to:

Educational and Entertaining Project Kits for Robots, Smart Cars and Drones

Educational Kits to Learn Robotic Software Systems for Arduino, Raspberry Pi and micro: bit
Electronic Component Assortments, Electronic Modules and Specialized Tools

Product Development and Customization Services

You can find more about Freenove and get our latest news and updates through our website:

http://www.freenove.com

Copyright

All the files, materials and instructional guides provided are released under Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported License. A copy of this license can be found in the folder containing
the Tutorial and software files associated with this product.

This means you can use these resource in your own derived works, in part or completely, but NOT for the
intent or purpose of commercial use.

Freenove brand and logo are copyright of Freenove Creative Technology Co., Ltd. and cannot be used without

\O/
/ ~
FREENOVE

Raspberry Pi® is a trademark of Raspberry Pi Foundation (https://www.raspberrypi.org/).

written permission.

support@freenove.com [l

http://www.freenove.com/
mailto:support@freenove.com
http://www.freenove.com/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://www.raspberrypi.org/

support@freenove.com www.freenove.com [l
Contents
(€T] g Ve TS = o =T ISR |
T 0T)= T 00 T o TSR |
SAFETY AN PrECAUTIONS. ...ttt Il
ADOUL FTEENOVE ..o I
COPYTIGNT oS I
(00 o1 =T o1 RS v
= = o XSS 1
2 1Y 0] 0 =T Y o S 2
Installing an OPerating SYSTEM ... sa e s s e e ae s s sae s s e e nnenas 9
COMPONENT LIST 1ottt 9
OPLIONAl COMPONENTS ...ttt 11
RASPIEITY PiiOS ...t 13
Getting Started With RASPIEITY Pl sttt 19
(O30T o 4T g0 I o =T o Y- - | [o 1 S 28
LINUX COMIMANG <.ttt ettt ettt ettt n ettt s s 28
INStall GPIO ZEro PYtNON THOTary 31
ODBtaIN the PrOJECT COUB ...ttt 32
PYTNONZ2 & PYLNONS ...ttt ettt sttt na s 33
(08 0= T o1 =Y i I I = SRS SRTRT 36
PPOJECT 1.1 BIINK ettt ettt 36
Freenove Car, Robot and other products for RaSPhErty Pi.........oiceeeceeeee e 52
Chapter 2 BUttONS & LEDS ...t e ssss s sss s s e s s sss s s ssesssssssessesssssssssssssesnssnssnssesasssnssnns 53
Project 2.1 Push BUTtON SWITCN & LEDcocociieicecee ettt 53
Project 2.2 MINI Table LAMID ...ttt naenens 57
Chapter 3 LED Bar Graph ... sesse s e ssssssse s ssssssssssesssssssssssssessssssssssessssssssssssessssssssssssnsssnnnnns 60
Project 3.1 FIOWING WaALEr LIGNT ...ttt 60
Chapter 4 ANAlOg & PWIM ...t sss s s s s sss s s s sassss e ssesasssssnsssssesnessssnssesassnnnns 64
Project 4.1 Breathing LED ..ottt sttt naanens 64
Chapter 5 RGB LED ...t se s s ses s s as et s s e s s s e et s s s aenn et et s e eae e e e s e s annnnnnnns 69
Project 5.1 MUITICOIOIEA LED ...ttt naanens 70
(O3 0T T o1 L= G CT 21U b= SRR STT 73
PrOJECE 8.1 DOOIOEII ..ottt sttt naeneens 73
Y=Yt TR AN =T o OO U TR TRTTT 79
(IMPOrtant) Chapter 7 ADC ... se s s s a st s s s e s s s sa e e e e s e aesn e e e e s aennnannns 81
Project 7.1 Read the Voltage Of POENTIOMEIET ...ttt 81
Chapter 8 Potentiometer & LED ... sss s s se s s sns e s s snesns e s e snssnnns 93
PrOJECE 8.1 SOt LIGNT. ettt ettt s et se st naen e naaneens 93
Chapter 9 Potentiometer & RGBLED ... e s sns e s s snesns e e sassnssnnns 98
ProjeCt 9.1 COlOM UL LIGNT ...ttt sttt naan e naaneens 98
Chapter 10 PhotoreSiStor & LED ... ses s ssesssses e s ssssssssssessessssssssssesssssssssssssssnssnnns 103
ProjeCt 10.1 NIGNTLAMID co.cvieeceeee ettt ettt sttt sttt en et en et ense s nsansesnaans 103

B support@freenove.com

http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com support@freenove.com

(08 0 F=T o1 =Y gl I I I 1= ' Y53 o1 RS RR 109
ProjeCt 11.1 TREIMOMIEBLET ...ttt et en et an s enansenas 109
(08 0 T=T o1 =Y g I 1) V£ 4 o2 RS SR 115
PrOJECE 12,1 JOYSTICK ..ottt ettt en et sesan s ssnansenans 115
Chapter 13 MOLOr & DIIVEN ...ttt s as e s s sa st s n e se s s e s ae e e s s aennnnnnns 121
Project 13.1 Control a DC Motor with @ POLENTIOMELEN ..o 121
Chapter 14 Relay & IMOLOX ...t s a s se st e sn e e s e e ae e e e e s aennnnnne 132
Project 14.1.1 RElAY & IMOTON ...ttt ettt enanaenens 132
(08 0T T o1 =T g ST T =T Y o RS 138
PrOJECE 15.1 SEIVO SWEEP ...ttt ettt en et an e enansanans 138
(04 JF=1 o =1 g ILSTST =Y o] o 7= gl 1Y/ o] o T 145
Project 16.1 STEPIPET IMOTOT . ..ottt en ettt en e ne st enssaesenansenans 145
Chapter 17 74HC595 & Bar Graph LED. ... ieceereereerscsesee s e e e sese s sessssessesesassssessssenaeas 153
Project 17.1 FIOWING Water LIGNT. ...ttt et 153
Chapter 18 74HC595 & 7-Segment DiSPlaycccoveceeriermrenererserereseseeseseseseseseesssesessssessessssssssssesessens 159
Project 18.1 7-SegMENT DISPIAYcvvceieeceeeeeeeee ettt ettt s s aanas 159
Project 18.2 4-Digit 7-SegMENT DISPIAYocuiieceer oot ee et enan s 164
Chapter 19 74HC595 & LED MATliX....couocrreeeereaersreresesesesessssesessesessessssssssesssssssssssssssssssssssssssssssasssssssssssen 172
PrOJECE 19,1 LED IMAATIIX ...ttt ettt ettt ettt s et en et en st e s n st sanssaesenensenans 172
Chapter 20 LCDLB02ccoeeeeereereeresereseseseesssessssessssesssssssssssssssssssssssssessssssssssssssssasssssssssssenssassssasssssssens 180
Project 20.1 12C LEDLIB02 ...ttt 180
Chapter 21 Hygrothermograph DHTLL ... sessesesessassssssssssssssssassssssssssnsens 186
Project 21.1 HygrothermMOGraph........ccciiiisee ettt 186
Chapter 22 Matrix KEYPad......cccucereemrrsirirenisies s sesesessesssssssessssessssssssssssssssssssssssssssasssssssssssssssassssssssssssens 190
Project 22.1 MatriX KEYPAAcc.coiiiiiiiiiiiiee ettt 190
Chapter 23 UHrasonic RANGINGc.ccocvurrrnereriesrrnsesessesessessssssssssssesssen 197
Project 23.1 UItraSoniC RANGINGc.ciiiiiiiiieiei ettt bbbttt naes 197
(04 ST o (=T g | I TP 203
PrOJECT 241 RFID ..ottt bbb bbb es 203
Chapter 25 WED 0T ... sas e ses e se s ssssssas s sessessassssasssssssssssssssasssssssssssenssanssssnsessnsens 214
Project 25.1 REMOLE LED ...ttt bbb 214
WWAt's INEXLE? ..o ses s e s ses e s sas e s e se e sen s se e e e Re e s an e eEeRe e s Re st nRn e nEnRe e e Re s nanannansn s nsnnsnans 220

support@freenove.com [l

http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com >4 support@freenove.com

Preface

Raspberry Pi is a low cost, credit card sized computer that plugs into a computer monitor or TV, and uses a
standard keyboard and mouse. It is an incredibly capable little device that enables people of all ages to explore
computing, and to learn how to program in a variety of computer languages like Scratch and Python. It is
capable of doing everything you would expect from a desktop computer, such as browsing the internet,
playing high-definition video content, creating spreadsheets, performing word-processing, and playing video
games. For more information, you can refer to Raspberry Pi official website. For clarification, this tutorial will

also reference Raspberry Pi as RPi, RPI and RasPi.
In this tutorial, most chapters consist of Components List, Component Knowledge, Circuit, and Code
(Python code). We provide Python code for each project in this tutorial. After completing this tutorial, you

can learn Java by reading Processing.pdf.

This kit does not contain Raspberry and its accessories. You can also use the components and modules in

this kit to create projects of your own design.

Additionally, if you encounter any issues or have questions about this tutorial or the contents of kit, you can
always contact us for free technical support at:

support@freenove.com

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/
https://www.raspberrypi.org/
mailto:support@freenove.com

X4 support@freenove.com

www.freenove.com [l

Raspberry Pi

So far, at this writing, Raspberry Pi has advanced to its fourth generation product offering. Version changes
are accompanied by increases in upgrades in hardware and capabilities.

The A type and B type versions of the first generation products have been discontinued due to various reasons.
What is most important is that other popular and currently available versions are consistent in the order and
number of pins and their assigned designation of function, making compatibility of peripheral devices greatly

enhanced between versions.

Below are the raspberry pi pictures and model pictures supported by this product. They have 40 pins.

Actual image of Raspberry Pi 4 Model B:

| INEHOZ609LUL |
s| oy | €1

a3
i
101 D, U,

SRR AR

CAD image of Raspberry Pi 4 Model B:

L3INY3HLT

©
(=1
S
&
2
o
2
[=9
g
8
14
©

@
o
°
£
<
o
@
a
o
@
©
o

%

: (A\f‘ldS‘m) 1Sa
. J |

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www .freenove.com

X support@freenove.com

Actual image of Raspberry Pi 3 Model B+:

G

J1PWR IN

M

0 aNE uy apew

() TENGAAAA LA 1 e

CAD image of Raspberry Pi 3 Model B+:

W

13NY3HLT

&

pberry Pi 3 Model B+
aspberry Pi 2017

Actual image of Raspberry Pi 3 Model B:\

IAWA ™ A\ A

EE
i
75

CAD image of Raspberry Pi 3 Model B:

NENE -

L3INY3IHLI

5 =
°

= .ﬂ
3 =

CSI (CAMERA)

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com

www.freenove.com [l

Actual image of Raspberry Pi 2 Model B:

CAD image of Raspberry Pi 2 Model B:
it

Raspberry Pi 2 Model B
© Raspberry Pi 2014

it i www saspbecrypi.org

(AV1ds1Q) I1Sa
IRRNRRRRRNNEEEE

3 | Aesio 3
REEAREERNTEELS

L
%A 344wy 3peN v

CAD image of Raspberry Pi 1 Model B+:
1

it i www saspbecrypi.org

o~
-
>
+
[a1]
)
°
o
=
o
2
=
@
a
a
(7]
©
o

<
-~
o
3
a
oy
E
@
Qa
a
7]
[\
(o]
©

(AV1ds1Q) I1Sa
IRRNRRRRRNNEEEE

L B

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4 support@freenove.com

Actual image of Raspberry Pi 3 Model A+: CAD image of Raspberry Pi 3 Model A+:

R - -~

CSI (CAMERA)
|

&
<
o
k]
I}
=
»
o
2
=
[}
2
aQ
w
©
o

© Raspberry Pi 2018

(Av1dsia) 1sa

‘ ERNRNNENNENE

Actual image of Raspberry Pi 1 Model A+: CAD image of Raspberry Pi 1 Model A+:

3

CSI (CAMERA)
1

¥

RS8
Ci0s ps
NRST . [

&
<V
ﬁv
o
B
=g
e
>
£3
2%
%m
4
x o

hitp Jlwww raspbeerypi org

©Raspbe

(AV1dsia) ISa

A ERNNRNNNEEREEND

TITEEEILIINIY

L

o0

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

m B4 support@freenove.com www.freenove.com [l

Actual image of Raspberry Pi Zero W: CAD image of Raspberry Pi Zero W:

B

Raspberry Pi Zero W

e
@
N
&
@
a
o
@
]
o

R

MICRO
| SO CARD

DR
)9

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4 support@freenove.com

Hardware interface diagram of RPi 4B:
e

GPIO lniaugipiigngeollngug b afudo

Connector Raspberry Pi 4 Model B
© Raspberry Pi 2018

Ethernet
Connector

ETHERNET

Display

Connector

DSI (DISPLAY)
4

USB
Connector x4

Power
Power
Connector g

CSI (CAMERA)

Micro HDMI
Connector x2

Audio
Connector

Camera

Connector

Hardware interface diagram of RPi 3B+/3B/2B/1B+:
e

Raspberry Pi 3 Model B v1.2
COﬂneCtOl’ © Raspberry Pi 2015

USB
Connector

Display

Connector

DSI (DISPLAY)

I8

Ethernet
Connector

ETHERNET

Power

(V¥3UYD)

Connector

Audio
Connector

Camera

HDMI
Connector

Connector

Hardware interface diagram of RPi 3A+/A+:

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

m B4 support@freenove.com www.freenove.com [l

GPIO = ¥

Connector Raspberry Pi Model A+
© Raspberry Pi 2014

USB
Connector

Display
Connector

DSI (DISPLAY)

Power

(V43WV0) ISO

Connector

HDMI
Connector

Audio
Connector

Camera

Connector

Hardware interface diagram of RPi Zero/Zero W

GPIO

Connector
Raspberry Pi Zero W

Camera
Connector

Power

HDMI
Connector

Connector Connector

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

>4 support@freenove.com _

B www .freenove.com

Installing an Operating System

The first step is to install an operating system on your RPi so that it can be programmed and function. If you

have installed a system in your RPi, you can start from Chapter O Preparation.

Component List

Required Components

5V/3A Power Adapter. Note: Different versions of
Raspberry Pi have different power requirements
(please check the power requirements for yours
on the chart in the following page.)

Any Raspberry Pi with 40 GPIO

& | Respbercy Pi 4 Model B

na M 1904

<Adus

19 | Trxcom® |-
| TRJGO926HENL J_
9 | Cni

Micro SD Card (TF Card) x1, Card Reader x1

SAMSUNG 0'zgsn

3D f¥o | csoronw

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Power requirements of various versions of Raspberry Pi are shown in following table:

Recommended | Maximum total USB Typical bare-board
PSU current peripheral current draw active current
capacity consumption
Raspberry Pi Model A 700mA 500mA 200mA
Raspberry Pi Model B 1.2A 500mA 500mA
Raspberry Pi Model A+ 700mA 500mA 180mA
Raspberry Pi Model B+ 1.8A 600mA/1.2A (switchable) 330mA
Raspberry Pi 2 Model B 1.8A 600mA/1.2A (switchable) 350mA
Raspberry Pi 3 Model B 2.5A 1.2A 400mA
Raspberry Pi 3 Model A+ 25A Limited by PSU, board, and 350mA
connector ratings only.
Raspberry Pi 3 Model B+ 2.5A 1.2A 500mA
Raspberry Pi 4 Model B 3.0A 1.2A 600mA
Raspberry Pi Zero W 1.2A Limited by PSU, board, and 150mA
connector ratings only.
Raspberry Pi Zero 1.2A Limited by PSU, board, and 100mA

connector ratings only
For more details, please refer to https://www.raspberrypi.org/help/fags/#powerRegs

In addition, RPi also needs an Ethernet network cable used to connect it to a WAN (Wide Area Network).

All these components are necessary for any of your projects to work. Among them, the power supply of at
least 5V/2.5A, because a lack of a sufficient power supply may lead to many functional issues and even
damage your RPi, we STRONGLY RECOMMEND a 5V/2.5A power supply. We also recommend using a SD
Micro Card with a capacity of 16GB or more (which, functions as the RPI's *hard drive") and is used to store
the operating system and necessary operational files.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://www.raspberrypi.org/help/faqs/#powerReqs

4 support@freenove.com

Optional Components

Under normal circumstances, there are two ways to login to Raspberry Pi: 1) Using a stand-alone monitor. 2)

B ww.freenove.com

Using a remote desktop or laptop computer monitor “sharing” the PC monitor with your RPi.

Required Accessories for Monitor

If you choose to use an independent monitor, mouse and keyboard, you also need the following accessories:
1. A display with a HDMI interface
2. A Mouse and a Keyboard with an USB interface

As to Pi Zero and Pi Zero W, you also need the following accessories:
1. A Mini-HDMI to HDMI Adapter and Cable.

2. A Micro-USB to USB-A Adapter and Cable (Micro USB OTG Cable).
3. A USBHUB.

4. USB to Ethernet Interface or USB Wi-Fi receiver.

For different Raspberry Pi Modules, the optional items may vary slightly but they all aim to convert the
interfaces to Raspberry Pi standards.

. . Pi Zero . . Pi .
Pi Zero Pi A+ Pi 3A+ Pi B+/2B Pi 4B
3B/3B+
Monitor Yes (All)
Mouse Yes (All)
Keyboard Yes (All)
Micro-HDMI to HDMI
Yes No Yes No No No No
Adapter & Cable
Micro-HDMI to HDMI
No Yes
Adapter & Cable
Micro-USB to USB-A
Adapter & Cable
) Yes No Yes No
(Micro USB OTG
Cable)
USB HUB Yes Yes Yes Yes No No
USB to Ethernet select one from , Internal
optional))
Interface two or select two Integration Internal Integration
USB Wi-Fi Receiver from two Internal Integration optional

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Required Accessories for Remote Desktop

If you do not have an independent monitor, or if you want to use a remote desktop, you first need to login
to Raspberry Pi through SSH, and then open the VNC or RDP service. This requires the following accessories.

Pi Zero PiZeroW Pi A+ Pi 3A+ PiB+/2B Pi 3B/3B+/4B
Micro-USB to USB-A Yes Yes No
Adapter & Cable
(Micro USB OTG
Cable) NO
USB to Ethernet Yes Yes Yes

interface

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

. www.freenove.com

>4 support@freenove.com

Raspberry Pi OS

Without Screen - Use Raspberry Pi - under Windows PC: https://youtu.be/YNDORUuUP-to

With Screen - Use Raspberry Pi - under Windows PC: https://youtu.be/HEywFsFrj3|

Automatically Method

You can follow the official method to install the system for raspberry pi via visiting link below:
https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/2

In this way, the system will be downloaded automatically via the application.

Manually Method

After installing the Imager Tool in the link above. You can also download the system manually first.

Visit https://www.raspberrypi.org/downloads/
Install Raspberry Pi 0S using
Raspberry Pi Imager

Raspberry Pi Imager is the quick and easy way to install
Raspberry Pi OS and other operating systems to a microSD
card, ready to use with your Raspberry Pi. Watch our 45-
second video to learn how to install an operating system
using Raspberry Pi Imager.

Download and install Raspberry Pi Imager to a computer
with an SD card reader. Put the SD card you'll use with
your Raspberry Pi into the reader and run R erry Pi
Imager.

Download for Windows

Download for mac0S

Download for Ubuntu for x86

To install on Raspberry Pi 0S, type

sudo apt install rpi-imager

in a Terminal window.
Visit following website to download the OS file.
https://www.raspberrypi.com/software/operating-systems/

Raspberry Pi imager v1.6

Raspberry Pi

Operating System Storage

CHOOSE 08 CHOOSE STORAGE

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
https://youtu.be/YND0RUuP-to
https://youtu.be/HEywFsFrj3I
https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/2
https://www.raspberrypi.org/downloads/
https://www.raspberrypi.com/software/operating-systems/

X4 support@freenove.com www.freenove.com [l

Raspberry Pi 0S

Our recommended operating system for most users.

Compatible with: Raspberry Pi 0S with desktop

All Raspberry Pi models Release date: September 22nd 2022
Download

System: 32-bit

Kernel version: 5.15

Debian version: 11 (bullseye)
Size: 894MB Archive
Show SHAZ256 file integrity hash:

Release notes

Raspberry Pi 0S with desktop and recommended softwar\

Release date: September 22nd 2022
System: 32-bit

Kernel version: 515

Debian version: 11 (bullseye) Download torrent
Size: 2,700MB Archive
Show SHA256 file integrity hash:

Release notes

Download torrent

Download

And then the zip file is downloaded.
Write System to Micro SD Card
First, put your Micro SD card into card reader and connect it to USB port of PC.

SAMSUNG 0'zgsn

cisoIonw ¢

Then open imager toll. Choose system that you just downloaded in Use custom.

& Raspberry Pilmagerv17.2 — O x

Raspberry Pi

Operatin ;, System Storage

CHOOSE 05 CHOOSE STORAGE

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com D4 support@freenove.com

& Raspberry Pilmagerv1.7.2 — O ot

Operating System X

Emulation and game 0S5 >
Emulators for running retro-computing platforms

Other specific-purpose 05 >
Thin clients, digital signage and 3D printing operating systems

Misc utility images
Bootloader EEPROM configuration, etc.

Erase
Format card as FAT32

Use custom
Select a custom .img from your computer

Do £ & G

Choose the SD card.

@ Raspberry PiImager v1.7.2 — O >

Raspberry Pi

Operating System Storage

P022-09-22-RASPIOS-BULLSEYE-ARMHF-FULL.IMG.. CHOOSE S...

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Enable ssh and configure WiFi

Image option.

@ Raspberry Pilmagerv1.7.2 — O >

Raspberry Pi

Operating System Storage

P022-09-22-RASPIOS-BULLSEYE-ARMHF-FULL.IMG.. CHOOSE S...

Enable SSH.
& Raspberry Pilmagerv1.7.2 = O X
Advanced options X
Image customization options to always use v

Set hostname: raspbe"ypi . local

Enable SSH
@ Use password authentication
(O Allow public-key authentication only

0.
[[SO s d "l

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4 support@freenove.com

Configure WiFi and location. Here we set username as pi, password as raspberry. Click Save after setting

@ Raspberry Pilmagerv1.7.2 — O ot

Advanced options X

Set username and password

Username: Pl

——— T T TTT YT 1)

Configure wireless LAN
iy

551D =

Hidden SSID

Password ---...---.-

Finally WRITE.

& Raspberry Pilmagerv1.7.2 — O x

Raspberry Pi

Operating System Storage

P022-09-22-RASPIOS-BULLSEYE-ARMHF-FULL.IMG.. GENERIC ..

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Insert SD card

Then remove SD card from card reader and insert it into Raspberry Pi.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com D4 support@freenove.com

Getting Started with Raspberry Pi

Monitor desktop

If you do not have a spare monitor, please skip to next section Remote desktop & VNC. If you have a spare

monitor, please follow the steps in this section.

After the system is written successfully, take out Micro SD Card and put it into the SD card slot of RPi. Then
connect your RPi to the monitor through the HDMI port, attach your mouse and keyboard through the USB
ports, attach a network cable to the network port and finally, connect your power supply (making sure that it
meets the specifications required by your RPi Module Version. Your RPi should start (power up). Later, after
setup, you will need to enter your user name and password to login. The default user name: pi; password:

raspberry. After login, you should see the following screen.
I] - | 3 7 @0 oss

Congratulations! You have successfully installed the RASPBERRY Pl OS operating system on your RPi.

Raspberry Pi 4B, 3B+/3B integrates a Wi-Fi adaptor. You can use it to connect to your Wi-Fi. Then you can
use the wireless remote desktop to control your RPi. This will be helpful for the following work. Raspberry Pi
of other models can use wireless remote desktop through accessing an external USB wireless card.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Remote desktop & VNC

If you have logged in Raspberry Pi via display, you can skip to VNC Viewer.

If you don't have a spare display, mouse and keyboard for your RPi, you can use a remote desktop to share
a display, keyboard, and mouse with your PC. Below is how to use:

MAC OS remote desktop and Windows OS remote desktop.

MAC OS Remote Desktop

Open the terminal and type following command. If this command doesn’t work, please move to next page.

ssh pi@raspberrypi.local
The password is raspberry by default, case sensitive.

@ Terminal Shell Edit View Window Help

® 00 > freenove — ssh pi@raspberrypi.local — 80x24

Last login: Wed Jul 22 16:44: =
[freenove@PandeMacBook-Air ~ ssh pi@raspberrypi.local]
piRraspberrypi.local's passw

You may need to type yes during the process.

@ Terminal Shell Edit View Window Help

® @ - freenove — pi@raspberrypi: ~ — ssh pi@raspberrypi.local — 80x24
Last login: Wed Jul 22 16:49:43 on ttys000 =]
[freenove@PPandeMacBook—-Air ~ % ssh pi@raspberrypi.local]

[pi@raspberrypi.local's password:]
Linux raspberrypi 4.19.58-v7+ #1245 SMP Fri Jul 12 17:25:51 BST 2019 armv7l

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.

Last login: Wed Jul 22 09:56:01 2020 from fe80::82d:356d:4027:2fc5%wlan®

SSH is enabled and the default password for the 'pi' user has not been changed.

This is a security risk - please login as the 'pi' user and type 'passwd' to set
a new password.

pi@raspberrypi:~ $ JJ

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com

You can also use the IP address to log in Pi.
Enter router client to inquiry IP address named “raspberry pi”. For example, | have inquired to my RPi IP
address, and it is “192.168.1.131".

Open the terminal and type following command.
ssh pi@192.168.1.131
When you see pi@raspberrypi:~ $, you have logged in Pi successfully. Then you can skip to next section.

@ Terminal Shell Edit View Window Help

® e freenove — pi@raspberrvoi: ~ — ssh pi@192.168.1.131 — 81x44

[freenove@PandeMacBook-Air ~ %|ssh pi@192.168.1.131 B
The authenticity of host '192.168.1.131 (192.168.1.131)' can't be established.
ECDSA key fingerprint is SHA256:95hc761SxQ/+z9TGG57136senETX60yaAaqds1ENpE4.

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

| Warning: Permanently added '192.168.1.131' (ECDSA) to the list of known hosts.
[pi@192.168.1.131's password:

Linux raspberrypi 4.19.58-v7+ #1245 SMP Fri Jul 12 17:25:51 BST 2019 armv71l

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Wed Jul 22 09:56:32 2020 from fe80::82d:356d:4027:2fc5%wlan®

SSH is enabled and the default password for the 'pi' user has not been changed.
This is a security risk — please login as the 'pi' user and type 'passwd' to set
a new password.

[pi@raspberrypi:~ $ sudo raspi-config

Raspberry Pi 3 Model A Plus Rev 1.0

Raspberry Pi Software Configuration Tool (raspi-config)

1 Change User Password Change password for the current user

2 Network Options Configure network settings

3 Boot Options Configure options for start-up

4 Localisation Options Set up language and regional settings to match your
5 Interfacing Options Configure connections to peripherals

6 Overclock Configure overclocking for your Pi

7 Advanced Options Configure advanced settings

8 Update Update this tool to the latest version

9

About raspi-config Information about this configuration tool

<Finish>

<Select>

Then you can skip to VNC Viewer.

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

If you are using winl0, you can use follow way to login Raspberry Pi without desktop.
Press Win+R. Enter cmd. Then use this command to check IP:
ping -4 raspberrypi.local

BN Command Prompt

.c) Microsoft C

C:\Users\Administrator>ping -4 raspberrypi

Then 192.168.1.147 is my Raspberry Pi IP.
Or enter router client to inquiry IP address named “raspberrypi”. For example, | have inquired to my RPi
IP address, and it is “192.168.1.147".
ssh pi@xxxxxxxxxxx(IP address)
Enter the following command:
ssh pi@192.168.1.147

T NO WARRANTY, to the extent

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com D4 support@freenove.com

VNC Viewer & VNC
Enable VNC

Type the following command. And select Interface Options=>P3 VNC = Enter>Yes>OK. Here Raspberry Pi
may need be restarted, and choose ok. Then open VNC interface.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Set Resolution
You can also set other resolutions. If you don’t know what to set, you can set it as 1280x720 first.

Then download and install VNC Viewer according to your computer system by click following link:
https://www.realvnc.com/en/connect/download/viewer/

After installation is completed, open VNC Viewer. And click File = New Connection. Then the interface is
shown below.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://www.realvnc.com/en/connect/download/viewer/

. www.freenove.com

>4 support@freenove.com

MName:

raspberry pi - Properties - O

General QOptions Expert

VNC Server: [192.168.1.117 |

| raspberry pi| |

Labels

To nest labels, separate names with a forward slash (/)

Enter a label name, or press Down to apply existing labels |

Security

Encryption: Let VMNC Server choose

e |

[#] Authenticate using single sign-on (550) if possible

Authenticate using a smartcard or certificate store if
possible

Privacy
Update desktop preview automatically

[ok] cancel

Enter ip address of your Raspberry Pi and fill in a name. Then click OK.
Then on the VNC Viewer panel, double-click new connection you just created,

VNG Viewer

File View Help

| Enter a VNC Server address or search

| ‘ﬁign in. *

raspberry pi

and the following dialog box pops up.

Authentication X

VMNC Server: 192.168.1.117::5900

Username: |pi |

Password: |......... |

Remember password

Catchphrase: Sister logo octopus. Giraffe Gloria time.

Signature: Bb-6b-40-50-f6-9d-8b-f8

[ok]| cancel

Enter username: pi and Password:

raspberry. And click OK.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

support@freenove.com

www.freenove.com

Here, you have logged in to Raspberry Pi successfully by using VNC Viewer

If there is black window, please set another resolution.

Cannot currently show the de:

In addition, your VNC Viewer window may zoom your Raspberry Pi desktop. You can change it. On your

VNC View control panel, click right key. And select Properties->Options label->Scaling. Then set proper

scaling.

Connect
raspbe

Rename
Delete

Duplicate

Properties...

F2

Ctrl+D
Alt+Enter

B support@freenove.com

& raspberry pi - Properties

General Options Expert

General
Picture quality: | Automatic

[View-only

Scaling

|100%

Preserve aspect ratio

Keys
Pass media keys directly to VNC Server
Pass special keys directly to VNC Server

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4 support@freenove.com

Here, you have logged in to Raspberry Pi successfully by using VNC Viewer and operated proper setting.

Raspberry Pi 4B/3B+/3B integrates a Wi-Fi adaptor.If you did not connect Pi to WiFi. You can connect it to
wirelessly control the robot.

thinclient_driy.
es

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

Why “Chapter 0"? Because in program code the first number is 0. We choose to follow this rule. In this chapter,

we will do some necessary foundational preparation work: Start your Raspberry Pi and install some necessary
libraries.

Raspberry Pi OS is based on the Linux Operation System. Now we will introduce you to some frequently used
Linux commands and rules.

First, open the Terminal. All commands are executed in Terminal.

- Terminal

=

When you click the Terminal icon, following interface appears.

File Edit Tabs Help

pi@raspberrypi:

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

Note: The Linux is case sensitive.
First, type “Is” into the Terminal and press the “Enter” key. The result is shown below:

File Edit Tabs Help

plfraspberrypi:

The "Is” command lists information about the files (the current directory by default).

Content between “$" and "pi@raspberrypi:” is the current working path. “~" represents the user directory,
which refers to “/home/pi” here.

D n.'.l":l

“cd” is used to change directory. “/” represents the root directory.

aspberrypi: cd fusr
aspberrypi:

sherrypi:

S|
spberrypi:

Later in this Tutorial, we will often change the working path. Typing commands under the wrong directory
may cause errors and break the execution of further commands.

Many frequently used commands and instructions can be found in the following reference table.

Is Lists information about the FILEs (the current directory by default) and entries
alphabetically.

cd Changes directory

sudo + cmd Executes cmd under root authority
J Under current directory

gcc GNU Compiler Collection

git clone URL | Use git tool to clone the contents of specified repository, and URL in the repository address.
There are many commands, which will come later. For more details about commands. You can refer to:
http://www.linux-commands-examples.com

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
http://www.linux-commands-examples.com/

Now, we will introduce several commonly used shortcuts that are very useful in Terminal.

1. Up and Down Arrow Keys: Pressing “1” (the Up key) will go backwards through the command history and
pressing V" (the Down Key) will go forwards through the command history.

2. Tab Key: The Tab key can automatically complete the command/path you want to type. When there is only
one eligible option, the command/path will be completely typed as soon as you press the Tab key even you
only type one character of the command/path.

As shown below, under the '~' directory, you enter the Documents directory with the “cd” command. After
typing “cd D", pressing the Tab key (there is no response), pressing the Tab key again then all the files/folders
that begin with “D” will be listed. Continue to type the letters "oc" and then pressing the Tab key, the

“Documents” is typed automatically.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

GPIO Zero is a simple interface to GPIO devices with Raspberry Pi. GPIO Zero is installed by default in the
Raspberry Pi OS desktop image, and the Raspberry Pi Desktop image for PC/Mac, both available from
raspberrypi.org. Follow these guides to installing on Raspberry Pi OS Lite and other operating systems.

To install the GPIO Zero Python library, please open the Terminal and then follow the steps and commands
below.

Note: For a command containing many lines, execute them one line at a time.

Enter the following commands one by one in the terminal to install GPIO Zero:

sudo apt-get update

sudo apt install python3-gpiozero

If you're using another operating system on your Raspberry Pi, you may need to use pip to install GPIO Zero
instead. Install pip using get-pip and then type:

sudo pip3 install gpiozero

Run the gpiozero command to check the installation:

pinout -r REVISION

That should give you some confidence that the installation was a success.

piéraspberrypi

racet

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
https://pip.pypa.io/en/stable/installing/

X4 support@freenove.com www.freenove.com [l

Obtain the Project Code

After the above installation is completed, you can visit our official website (http://www.freenove.com) or our
GitHub resources at (https://github.com/freenove) to download the latest available project code.
In this tutorial, we provide Python language code for each project.

This is the method for obtaining the code:
In the pi directory of the RPi terminal, enter the following command.

(There is no need for a password. If you get some errors, please check your commands.)

After the download is completed, a new folder "Freenove_RFID_Starter_Kit_for_Raspberry_Pi" is
generated, which contains all of the tutorials and required code.

This folder name seems a little too long. We can simply rename it by using the following command.

"Freenove Kit" is now the new and much shorter folder name.

® @ B reeoext

File Edit View Sort Go Tools
| 5% ees | [&] & ™ | /home/pi/Freenove_Kit B
= [Name Size Modified Description A
» || Code [Code Saturday, December 28, 2018 17:39 folder
> |:| Datasheet l:l Datashest Saturday, December 28,2019 17:39 folder
» || Processing [Processing Saturday, December 28,2019 17:39 folder
b [Freenove_Three-wheeled_Smart Ca_ | &4 List_Ultimate_RPi_Kitjpg 839.8 KiB Saturday, December 28, 2019 17:39 JPEG image
> [MagPi £ readmemd 2.4 KB Saturday, December 28, 2019 17:39 Markdown document
» [|mu_code E Processing.pdf 13.1 MIB Saturday, December 28,2019 17:39 PDF document
> Music E Read Me First pdf 643.8 KIB Saturday, December 28,2019 17:39 PDF document
> [zal Pictures E Tutorial pdf 16.3 MIB Saturday, December 28,2019 17:39 PDF document
» D Processing = LICENSE.txt 19.1 KiB Saturday, December 28,2019 17:39 plain text document

If you have no experience with Python, we suggest that you refer to this website for basic information and
knowledge.
https://python.swaroopch.com/basics.html

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
http://www.freenove.com/
https://github.com/freenove
https://python.swaroopch.com/basics.html

Python code, used in our kits, can now run on Python2 and Python3. Python3 is recommend. If you want to
use Python2, please make sure your Python version is 2.7 or above. Python2 and Python3 are not fully
compatible. However, Python2.6 and Python2.7 are transitional versions to python3, therefore you can also
use Python2.6 and 2.7 to execute some Python3 code.

You can type “python2” or “python3” respectively into Terminal to check if python has been installed. Press
Ctrl-Z to exit.

piéiraspberrypi
VI { 15
l P &4

1]+ Stopg
pifiraspberrypi:

T

pifiraspberrypi:

ipifraspberrypi

First, execute python to check the default python on your raspberry Pi. Press Ctrl-Z to exit.

pi@raspberrypi

ipifraspberrypi

If it is python3, you can skip this section.

If it is python2, you need execute the following commands to set default python to python3.
1. Enter directory /usr/bin

cd /usr/bin

2. Delete the originalpython link.

sudo rm python

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

3. Create new python links to python.
sudo In -s python3 python

4. Check python. Press Ctrl-Z to exit.
python

aspberrypi C n -s python3 python
aspberrypi 1

= I:I I.

If you want to set python?2 as default python in other projects, just repeat the commands above and change
python3 to python2.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

Now, we will introduce several shortcuts that are very useful and commonly used in terminal.

1. up and down arrow keys. History commands can be quickly brought back by using up and down arrow
keys, which are very useful when you need to reuse certain commands.

When you need to type commands, pressing “1” will go backwards through the history of typed commands,
and pressing “V" will go forwards through the history of typed command.

2. Tab key. The Tab key can automatically complete the command/path you want to type. When there are
multiple commands/paths conforming to the already typed letter, pressing Tab key once won'’t have any result.
And pressing Tab key again will list all the eligible options. This command/path will be completely typed as
soon as you press the Tab key when there is only one eligible option.

As shown below, under the ‘~'directory, enter the Documents directory with the “cd” command. After typing
“cd D", press Tab key, then there is no response. Press Tab key again, then all the files/folders that begin with
“D” is listed. Continue to type the character "oc", then press the Tab key, and then “Documents” is completely

typed automatically.

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Chapter 1 LED

This chapter is the Start Point in the journey to build and explore RPi electronic projects. We will start with
simple “Blink” project.

Project 1.1 Blink

In this project, we will use RPi to control blinking a common LED.

Component List

Raspberry Pi GPIO Extension Board & Ribbon Cable
(Recommended: Raspberry Pi 4B / 3B+ / 3B
Compatible: 3A+ /2B / 1B+ / 1A+ / Zero W / Zero)

BEREEEEEEEEREREEREERREREE R ERREEEREREREERD
Raspberry Pi GPIO Extension Shield

#3V3 5Ve
#SDA1 5Ve
#SCL1 GNDs
#GPIO4 TXDOs
#GND RXD0s#
#GPIO17 GPIO18s
#GPIO27 GNDs
#GPI022 GPIO23e
#3V3 GPI024s
#MOSI GND=
eMISO GPIO25s
oSCK CEOs
#GND CE1e
#SDA0 SCLOs
#GPIO5 GNDs
#GPIO6 GPIO12s
#GPIO13 GNDs
#GPIO19 GPIO16e
#GPI026 GPI020s
#GND GPIO21e

13INY3HL3

mw
32
SR
i
iy
3
238
[~5
o
g
S0

B - (AV1dSIa) ISa
[| |
O | i

Breadboard x1

o 0o 00 ® o 0 00 ® o o 0o ® o 0o 00 ® o 0o 0 0 ® e 0 00 ® o 0o 0o 0 ® o 0 0 0 ® e 0 0 0 ® o 0 0 0

e o 0o 00 ® o o 0 o ® o 0o 00 e o 0o 00 ® e 0o 0 0 ® o 0 0 0 ® o 0o 0 0 ° o . ® o 0 0 0
® © 0 0 0 0 0 0O 0 0 O O O O O O G G OO G G O O O O O G G O OO O O S OO O O OGO S OO OGO O S S S S G OO S OGSO
© © 0 0 0 0 9 O 0 0 0 O O O O O O O O O O O G O O O O G O O OO O O O O OO O O O O O O OO OO SO O O S SO O S S G OO S
® © © 0 0 0 © 0 0 0 0 O O O O O O O O O O G O OO O O O O O O O O O O O O G O O O O S O O O OO O S O S O OO G G S G O O
© © 0 0 0 0 © O 0 0 O O ° O O G O O O O O O O O OO O S O O O S O O O S OO O OGO OO OO GO O O S G O OO O O O GO OO
® © 0 0 0 0 9 0 0 0 O O O O O O O G O O O G GO O G O G G O OO O O S O OO G OO O OO O O G OSSO OSSO O S S OGO S

© © 0 0 0 0 © ° © 0 0 O ° O O O O O S O O O O O O O O O O O S O O O O O OO S O OO OO O OO OO O S S G O OO O G GG O e
© © © 0 0 0 0 © 0 O O O O O O O O O O O O O O O O O O G O O OO O O O O O O O O O O O OO G O OO S G O S SO OO S GG O
© © © 0 6 0 0O ° 0 O O O O O O O O O O O O S O O O O OO O O OO O O OO O O O O O OO OO OO OO O O S S OO O S SO S e
© © 0 0 0 0 0 © 0 0 0 0 ° OO O O OO O S OO O OO OO S S OO S S S S GO e
© © © 0 0 0 0 ° © 0 0 6 0 0 O O O O O O O O O O OO O O O O O O O O O O OO O O OO O O OO O OGO GG GO O O S GG O
® e 0o 0o ® o 0 0 o ® o o 0 o ® o o 0 o ® o 0o 0 0 ® o 0 0o 0 ® o 0o 0 o . . ® o 0 ® o 0 0 0
e o o 0 o e o 0 0 @ ® o o o o ® o o 0 o LG A ® o 0 0 0 ® o o o o ® o 0 0 0 ® o 0 0 o ® o o o 0

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4 support@freenove.com

LED x1 Resistor 220Q x1 Jumper
Specific quantity depends on the circuit.

Py ——)

In the components list, 3B GPIO, Extension Shield Raspberry and Breadboard are necessary for each project.
Later, they will be reference by text only (no images as in above).

GPIO

GPIO: General Purpose Input/Output. Here we will introduce the specific function of the pins on the Raspberry
Pi and how you can utilize them in all sorts of ways in your projects. Most RPi Module pins can be used as
either an input or output, depending on your program and its functions.

When programming GPIO pins there are 3 different ways to reference them: GPIO Numbering, Physical
Numbering and WiringPi GPIO Numbering.

BCM GPIO Numbering

The Raspberry Pi CPU uses Broadcom (BCM) processing chips BCM2835, BCM2836 or BCM2837. GPIO pin
numbers are assigned by the processing chip manufacturer and are how the computer recognizes each pin.
The pin numbers themselves do not make sense or have meaning as they are only a form of identification.
Since their numeric values and physical locations have no specific order, there is no way to remember them
so you will need to have a printed reference or a reference board that fits over the pins.

Each pin’s functional assignment is defined in the image below:

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com

www.freenove.com .

Pin 1
+3v3 +5V
GPIO2 / SDAL +5V
GPIO3 / SCL1 GND
GPI04 TXDO [GPIO 14
GND RXDO / GPIO 15
GPIO17 GPIO 18
GPIO27 GND
S DEei Ay @ GPIO22 GPIO 23
@ - - +3v3 GPIO 24
GPIO10 / MOSI GND
e GPIOS | MISO GPIO 75
g 2 GPIO11 / SCLK CEO# / GPIOB
g% GND CEl# / GPIOT
;; GPIOO / ID_SD ID_SC / GPIO1
Al GPIOS GND
GPIOG GPIO12
= GPIO13 GND
mm;g GPIO19 / MISO CE2# | GPIO16
GPIO26 MOSI / GPIO20
GND SCLK / GPIO21

Pin 39 Pin 40

For more details about pin definition of GPIO, please refer to http://pinout.xyz/

PHYSICAL Numbering

Another way to refer to the pins is by simply counting across and down from pin 1 at the top left (nearest to
the SD card). This is 'Physical Numbering', as shown below:

s Q00 0000000000

0000 :- 0000090 0000 =

Raspberry Pi A+ / B+ and Raspberry Pi 2 physical pin numbers

(Oerio @around ()3av @sv (e

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
http://pinout.xyz/

You can use the following command to view their correlation.
Pinout

000000000000000000008NE
lo00000000000000000

Wi

i P1 Model 3A+ V1.8

98200

BCM2B37

512MB

MicroSD
USBE ports : 1 (of which @ USB3)
Ethernet ports : @ (GMbps max. speed)
Wi-f1i : True
Bluetooth : True
Camera ports (CSI) : 1
Display ports (DSI): 1

JE:
3v3
GPIODZ2
GPIO3
GPID4

EN W

GPIO14
GPIO1S
GPIO17 GPIO18
GPIOZ27
GPIOD22

3v3
GPIO10
GPIO9

GPIO11

GPIO23
GPIO24

T .

; I
P

GPIO25
GPIOS
GPIOT7
GPIO1

GPIO®
GPIOS
GPIOG
GPIO13
GPIO19
GPIOZ26

GPIO12

GPIO16
(GPIO020
(40) GPIOZ1

S T ey

L Ll L) W M

w

For further information, please refer to https://pinout.xyz/
pi@raspberrypi:

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com

www.freenove.com .

Circuit

First, disconnect your RPi from the GPIO Extension Shield. Then build the circuit according to the circuit and
hardware diagrams. After the circuit is built and verified correct, connect the RPi to GPIO Extension Shield.
CAUTION: Avoid any possible short circuits (especially connecting 5V or GND, 3.3V and GND)!

WARNING: A short circuit can cause high current in your circuit, create excessive component heat and cause

permanent damage to your RPi!

Schematic diagram

BCM GPIO Numbering

3.3V 5V
—31SDA1 TXDO }=8
—21SCL1 RXDO 10—
—LAGPI04 GPIO18}-12—
111GPIO17 GPI023}-16
, 3 GpPI027 GP1024 |18
2 {GPI022 GPI1025}22
§ B 19 fmosi CEO (24—
21dmiso CE1}28~
231scLK SCLO8-
L2L1SDAD GPIO12}32
Vi 291GPI05 GPI1016}-36~
4 LEDI —31—‘GP|06 GPI020 [38
-331GPI013 GPI021 40
%‘GPIOW
(GP1026 Raspberry Pi
GPIO Extension Shield
GND

PHYSICAL GPIO Numbering

The code uses this one.

DSI (DISPLAY

& Il

IRRRRERRERRRRRRRRERERRRERERRRERERERRRRREE 4

Note:

Raspberry Pi GPIO Extension Shield

Hardware connection. If you need any support, please contact us via: support@freenove.com

Do NOT rotate Raspberry Pi to change the way of this connection.
Please plug T extension fully into breadboard.

The connection of Raspberry Pi 400 and T extension board is as below. Don’t reverse the ribbon.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

4 support@freenove.com

. www.freenove.com

FEJE T e
020 O o N O O
0 ol A
N G Gl o A A
ol G

Ce . =B

i
'H!Jm |

)
il

iy
il

If you have a fan, you can connect it to 5V GND of breadboard via jumper wires.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

How to distinguish resistors?

There are only three kind of resistors in this kit.

The one with 1 red ring is 10KQ s Rl

The one with 2 red rings is 220Q Ju

The one with O red ring is 1KQ ~ “ iy ’

Future hardware connection diagrams will only show that part of breadboard and GPIO Extension Shield.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4 support@freenove.com

Component knowledge

LED

An LED is a type of diode. All diodes only work if current is flowing in the correct direction and have two Poles.
An LED will only work (light up) if the longer pin (+) of LED is connected to the positive output from a power
source and the shorter pin is connected to the negative (-) output, which is also referred to as Ground (GND).
This type of component is known as “Polar” (think One-Way Street).

All common 2 lead diodes are the same in this respect. Diodes work only if the voltage of its positive electrode
is higher than its negative electrode and there is a narrow range of operating voltage for most all common
diodes of 1.9 and 3.4V. If you use much more than 3.3V the LED will be damaged and burnt out.

=4

/y LED Voltage Maximum current Recommended current

21 2 Red 19-22V 20mA 10mA

Green 29-34V 10mA 5mA

- - Blue 29-34V 10mA 5mA
-} Volt ampere characteristics conform to diode

Note: LEDs cannot be directly connected to a power supply, which usually ends in a damaged component. A
resistor with a specified resistance value must be connected in series to the LED you plan to use.

Resistor

Resistors use Ohms (Q) as the unit of measurement of their resistance (R). 1IMQ=1000kQ, 1kQ=1000Q.

A resistor is a passive electrical component that limits or regulates the flow of current in an electronic circuit.
On the left, we see a physical representation of a resistor, and the right is the symbol used to represent the
presence of a resistor in a circuit diagram or schematic.

1

The bands of color on a resistor is a shorthand code used to identify its resistance value. For more details of
resistor color codes, please refer to the card in the kit package.

With a fixed voltage, there will be less current output with greater resistance added to the circuit. The
relationship between Current, Voltage and Resistance can be expressed by this formula: I=V/R known as
Ohm'’s Law where | = Current, V = Voltage and R = Resistance. Knowing the values of any two of these allows
you to solve the value of the third.

In the following diagram, the current through R1 is: I=U/R=5V/10kQ=0.0005A=0.5mA.

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com Il

WARNING: Never connect the two poles of a power supply with anything of low resistance value (i.e. a
metal object or bare wire) this is a Short and results in high current that may damage the power supply and
electronic components.

Note: Unlike LEDs and Diodes, Resistors have no poles and re non-polar (it does not matter which direction
you insert them into a circuit, it will work the same)

Breadboard

Here we have a small breadboard as an example of how the rows of holes (sockets) are electrically attached.
The left picture shows the ways the pins have shared electrical connection and the right picture shows the
actual internal metal, which connect these rows electrically.

. "

GPIO Extension Board

GPIO board is a convenient way to connect the RPi I/O ports to the breadboard directly. The GPIO pin
sequence on Extension Board is identical to the GPIO pin sequence of RPi.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4 support@freenove.com

.
.

.
ceeee
.

.

.

.
ceeee
ceeee

ry PiGPIO E

cee e

P!

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

According to the circuit, when the GPIO17 of RPi output level is high, the LED turns ON. Conversely, when the
GPIO17 RPi output level is low, the LED turns OFF. Therefore, we can let GPIO17 cycle output high and output
low level to make the LED blink. We will use Python code to achieve the target.

Now, we will use Python language to make a LED blink.

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 01.1.1_Blink directory of Python code.

cd ~/Freenove_Kit/Code/Python_GPIOZero_Code/01.1.1_Blink
2. Use python command to execute python code blink.py.

python Blink.py

The LED starts blinking.

1| aspperrypl; ~ Cret ove KIt/Code [=11, _': 0 _Logesu E'. - w oA X

File Edit Tabs Help

~/Freenove_Kit/Code/Python_GPI0Zero_Code/E

pid@raspberrypi:
Program I

You can press “Ctrl+C” to end the program. The following is the program code:

1 from gpiozero import LED

2 from time import sleep

3

4 led = LED(17) # define LED pin according to BCM Numbering
5 #led = LED("J8:117) # BOARD Numbering

6 .

7 # pins numbering, the following lines are all equivalent
8 led = LED(17) # BCM

9 led = LED("GP1017") # BCM

10 | led = LED("BCM17”) # BOM

11 led = LED(”BOARDI1") # BOARD

12 led = LED("WPT0”) # WiringPi

13 | led = LED("]J8:117) # BOARD

14 Y

15 def loop():

16 while True:

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4 support@freenove.com

led. on() # turn on LED

print (led turned on >»>’) # print message on terminal
sleep(1) # wait 1 second

led. of f() # turn off LED

print (led turned off <<<) # print message on terminal

sleep(1) # wait 1 second

if name == main ’: # Program entrance
print (Program is starting ... \n’)
try:
Loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

print ("Ending program”)

Import the LED class from the gpiozero library.

! from gpiozero import LED l
Create an LED assembly for controlling the LED.

! led = LED(17) # define LED pin according to BCM Numbering l
Turn on LED device.

! led. on() # turn on LED l

Turn off LED devices.
[] led. off) # turn off LED |
The main function turns on the LED for one second and then turns it off for one second, which repeats endless.
def loop():
while True:

led. on() # turn on LED

print (C led turned on »>>’) # print message on terminal
sleep (1) # wait 1 second
led. off() # turn off LED

print (C led turned off <<’) # print message on terminal

sleep(1) # wait 1 second

Reference
About GPIO Zero:

A simple interface to GPIO devices with Raspberry Pi, Using the GPIO Zero library makes it easy to get
started with controlling GPIO devices with Python. The library is comprehensively documented at
https://gpiozero.readthedocs.io/en/stable/

https://github.com/gpiozero/gpiozero

For more information about the methods used by the LED class in the GPIO Zero library,please refer to:
https://gpiozero.readthedocs.io/en/stable/api_output.html#led

For more information about the methods used by the DigitalOutputDevice class in the GPIO Zero
library,please refer to:

https://gpiozero.readthedocs.io/en/stable/api_output.html#digitaloutputdevice

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
https://www.raspberrypi.org/
https://gpiozero.readthedocs.io/
https://gpiozero.readthedocs.io/en/stable/
https://gpiozero.readthedocs.io/en/stable/api_output.html#digitaloutputdevice

X4 support@freenove.com www.freenove.com [l

“import time” time is a module of python.
https://docs.python.org/2/library/time.html|?highlight=time%20time#module-time

In Python, libraries and functions used in a script must be imported by name at the top of the file, with
the exception of the functions built into Python by default.

For example, to use the LED interface from GPIO Zero, it should be explicitly imported:

from gpiozero import LED
Now LEDis available directly in your script:
led = LED(17) # define LED pin according to BCM Numbering

#led = LED(”J8:117) # BOARD Numbering
Alternatively, the whole GPIO Zero library can be imported:

import gpiozero

In this case, all references to items within GPIO Zero must be prefixed:
led = gpiozero. LED(17) # define LED pin according to BCM Numbering
#tled = gpiozero. LED(”J8:117) # BOARD Numbering

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://docs.python.org/2/library/time.html?highlight=time%20time#module-time

B www.freenove.com >4 support@freenove.com

Pin Numbering

This library uses Broadcom (BCM) pin numbering for the GPIO pins, as opposed to physical (BOARD)
numbering. Unlike in the RPi.GPIO library, this is not configurable. However, translation from other
schemes can be used by providing prefixes to pin numbers (see below).

Any pin marked “GPIO” in the diagram below can be used as a pin number. For example, if an LED
was attached to “GPIO17” you would specify the pin number as 17 rather than 11:

All Models
3v3

Power

1
GPIO2 5V
SDA IPC Power
GPIO3 e Ground
SCLIFC
GPlO4 ° GPIO14
UARTO TXD

GPIO15
UARTO RXD

GPIO18

5V

Power

©

Ground
GPIO17
GPIlO27 Ground
GPlO22 GPI023

3v3

Power

GPIO24

GPIO10
SPI MOSI

Ground

GPIO9
SPI MISO

GPIO25

GPIO11
SPISCLK

GPIO8
SPI CE0

GPIO7
SPI CE1

Ground

0OOENEEE O
OO EEeEHE

ID SD ID sC
I’C ID 28 IC ID

N
-~

GPIOS Ground

GPIO6 GPIO12
GPIO13 Ground
GPIO19 GPIO16
GPIO26 GPIO20

Ground GPI021

0 EE®E
ololof-10] ;]

40-pin
models only

#ss Ponsl

If you wish to use physical (BOARD) numbering you can specify the pin number as “BOARD11". If you
are familiar with the wiringPi pin numbers (another physical layout) you could use “WPIO” instead.
Finally, you can specify pins as “header:number”, e.g. “J8:11" meaning physical pin 11 on header J8

(the GPIO header on modern Pis). Hence, the following lines are all equivalent:

led = LED(17)

led = LED("GPI017")
led = LED("BCM177)
led = LED(”BOARD11")
led = LED("WPI10”)
led = LED("J8:117)

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com

www.freenove.com

Note that these alternate schemes are merely translations. If you request the state of a device on the
command line, the associated pin number will always be reported in the Broadcom (BCM) scheme:

led

led = LED(”BOARD11")

<{gpiozero.LED object on pin GPI017, active high=True,

is active=False>

In this tutorial, we will use the default integer pin number in the Broadcom (BCM) layout.
GPIO Numbering Relationship

BCM(Extension)

3.3V
GPIO2/SDA1
GPIO3/SCL1
GPIO4
GND
GPIO17
GP1027
GP1022
3.3V
GPIO10/MQSI
GPIO9/MOIS
GPIO11/SCLK
(€]\[p)
GPIO0/SDAO
GPIOS
GPIO6
GPIO13
GPIO19
GP1026
GND

Physical

BCM(Extension) | WingPi

5V
5V
GND
GPI1014/TXD0O
GPIO15/RXD0

GPIO18

GND
GP1023
GP1024

GND
GP1025

GPIO8/CEOQ
GPIO7/CE1
GPIO1/SCLO

GND
GPIO12

GND
GPIO16
GP1020
GPI021

In loop(), there is a while loop, which is an endless loop (a while loop). That is, the program will always be
executed in this loop, unless it is ended because of external factors. In this loop, set LED output high level,
then the LED turns ON. After a period of time delay, set LED output low level, then the LED turns OFF, which
is followed by a delay. Repeat the loop, then LED will start blinking.

def loop():
while True:

led. on() # turn on LED

print (led turned on >>>’) # print message on terminal
sleep(1) # wait 1 second

led. of f() # turn off LED

print (led turned off <<<{) # print message on terminal
sleep(1) # wait 1 second

In gpiozero, at the end of your script, cleanup is run automatically, restoring your GPIO pins to the state they
were found.To explicitly close a connection to a pin, you can manually call the close() method on a device
object:

| led = LED(ID)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4 support@freenove.com

led. on()
led
<{gpiozero.LED object on pin GPI017, active high=True, is active=True>
led. close()
led

{gpiozero.LED object closed>

This means that you can reuse the pin for another device, and that despite turning the LED on (and hence,
the pin high), after calling close() it is restored to its previous state (LED off, pin low).

In this tutorial, most projects have added an active run cleanup program to restore the GPIO pin to the found
default state.

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Freenove Car, Robot and other products for Raspberry Pi

We also have car and robot kits for Raspberry Pi. You can visit our website for details.

https://www.amazon.com/freenove

FNK0043 Freenove 4WD Smart Car Kit for Raspberry Pi

X \ https://www.youtube.com/watch?v=42v0GZUQ|Zc
FNKO050 Freenove Robot Dog Kit for Raspberry Pi

reesvarnser

https:.//www.youtube.com/watch?v=7BmIZ8 R9d4

FNKO0052 Freenove_Big_Hexapod_Robot_Kit_for_Raspberry_Pi
https://youtu.be/Lvghn]2DNZ0

Functions é -~ .‘:
; i .

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://www.amazon.com/freenove
https://www.youtube.com/watch?v=4Zv0GZUQjZc
https://www.youtube.com/watch?v=7BmIZ8_R9d4
https://youtu.be/LvghnJ2DNZ0

B www freenove.com >4 support@freenove.com

Chapter 2 Buttons & LEDs

Usually, there are three essential parts in a complete automatic control device: INPUT, OUTPUT, and CONTROL.
In last section, the LED module was the output part and RPI was the control part. In practical applications, we
not only make LEDs flash, but also make a device sense the surrounding environment, receive instructions
and then take the appropriate action such as turn on LEDs, make a buzzer beep and so on.

Next, we will build a simple control system to control an LED through a push button switch.

Project 2.1 Push Button Switch & LED

In the project, we will control the LED state through a Push Button Switch. When the button is pressed, our
LED will turn ON, and when it is released, the LED will turn OFF. This describes a Momentary Switch.

Component List

Raspberry Pi (with 40 GPIO) x1 LED x1 | Resistor 220Q | Resistor 10kQ | Push
GPIO Extension Board & Wire x1 x1 X2 Button
Breadboard x1 Switch x1

Jumper Wire | .

B 1

Please Note: In the code “button” represents switch action.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Component knowledge

Push Button Switch

This type of Push Button Switch has 4 pins (2 Pole Switch). Two pins on the left are connected, and both left
and right sides are the same per the illustration:
1 2

1 2 1 2

When the button on the switch is pressed, the circuit is completed (your project is Powered ON).

Circuit

Schematic diagram

3.3V 5V
J—ggﬁ? &88 8 R3 is used to limit current
—L1GPI04 GPIO18 g to protect GPIO 18, ifyou
GPIO17 GPIO23 k3 .
-131GpI027 GPI024 |18 @ set it to output HIGH level
121Gp1022 GPI025}-22— .
Rl 19 Imosi gEo_Zﬂ_ by mistake.
2LImiso E1}28- ‘ A_‘
231scLk SCLO 28~ .
-2L1SDAD GPIO12|-32—
v 29.1GPI05 GPI016|-36—
2 . S11GPIo6 GPI020-38~
331GPI013 GPIO21 40
351GPI019
GP1026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via:support@freenove.com

-mo'-ooc-m'
® o o " CGEINNNNED ¢ % 0 e e 8o
...'.'.l...'l._'..'!.l....

Pt it et et bt

Raspberry Pi GPIO Extension Shield

® e o 00 ® o0 0 o o 00 ® e 0 0 0 L o o 0 0 ® o o 00 ® o o 0 0 ® o 0 0

There are two kinds of push button switch in this kit.
The smaller push button switches are contained in a plastic bag.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4 support@freenove.com

This is how it works.
When button switch is released:

Raspberry Pi GPIO Extension Shield

DR LRI CEC R LRI DR LR LR LR .o
e e 0o 00 ® o000 CECRE I DRI DRI « e 00w “ e e e o0 o e

When button switch is pressed:

. o

Raspberry Pi GPIO Extension Shield

AAAAAAAAARAAARARAAARAANARARARRARARRRAALL

Code

This project is designed for learning how to use Push Button Switch to control an LED. We first need to read
the state of switch, and then determine whether to turn the LED ON in accordance to the state of the switch.

Python Code 2.1.1 ButtonLED

First, observe the project result, then learn about the code in detail. Remember in code “button” = switch
function

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 02.1.1_ButtonLED directory of Python code.

cd ~/Freenove_Kit/Code/Python_GPIOZero_Code/02.1.1_ButtonLED

2. Use Python command to execute btnLED.py.

python ButtonLED.py

Then the Terminal window continues to show the characters “led off---", press the switch button and the LED
turns ON and then Terminal window shows "led on-". Release the button, then LED turns OFF and then the
terminal window text "led off--" appears. You can press "Ctrl+C" at any time to terminate the program.

The following is the program code:

1 from gpiozero import LED, Button
2

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

led = LED(17) # define LED pin according to BCM Numbering
button = Button(18) # define Button pin according to BCM Numbering

def loop():
while True:

if button.is pressed: # if button is pressed
led. on() # turn on led
print ("Button is pressed, led turned on >>>”) # print information on terminal

else : # if button is relessed
led. of f() # turn off led
print ("Button is released, led turned off <<<”)

if name == main : # Program entrance
print (Program is starting...’)
try:
Loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

print ("Ending program”)

Import the Button class that controls Button from the gpiozero library.

! from gpiozero import LED, Button

Define GPIO17 as the LED control pin and GPIO18 as the button control pin. The button is set to the input
mode with a pull-up resistor by default.

led = LED(17) # define LED pin according to BCM Numbering
button = Button(18) # define Button pin according to BCM Numbering

The loop continuously determines whether the key is pressed. When the button is pressed, the variable
button.is_pressed has a value of 1 and the LED lights up. Otherwise, the LED will be off.
def loop():

while True:

if button.is pressed: # if button is pressed

led. on() # turn on led

print ("Button is pressed, led turned on >»>>”) # print information on terminal
else : # if button is relessed

led. of f() # turn off led

print ("Button is released, led turned on <<<”)

For more information about GPIOZero, please refer to the link below:
https://gpiozero.readthedocs.io/en/stable/

For more information about the methods used by the Button class in the GPIO Zero library,please refer to:
https://gpiozero.readthedocs.io/en/stable/api_input.ntml#button

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://gpiozero.readthedocs.io/en/stable/

B www.freenove.com >4 support@freenove.com

Project 2.2 MINI Table Lamp

We will also use a Push Button Switch, LED and RPi to make a MINI Table Lamp but this will function differently:
Press the button, the LED will turn ON, and pressing the button again, the LED turns OFF. The ON switch
action is no longer momentary (like a door bell) but remains ON without needing to continually press on the
Button Switch.

First, let us learn something about the push button switch.

Debounce a Push Button Switch

When a Momentary Push Button Switch is pressed, it will not change from one state to another state
immediately. Due to tiny mechanical vibrations, there will be a short period of continuous buffeting before it
stabilizes in a new state too fast for Humans to detect but not for computer microcontrollers. The same is true
when the push button switch is released. This unwanted phenomenon is known as “bounce”.

press I sltable rellease| stable
U
RN .
| |
Ideal state } }
| | N
u | | t
™ |
| |
Virtual state | ‘ ‘
| N
|] 4
|

Therefore, if we can directly detect the state of the Push Button Switch, there are multiple pressing and
releasing actions in one pressing cycle. This buffeting will mislead the high-speed operation of the
microcontroller to cause many false decisions. Therefore, we need to eliminate the impact of buffeting. Our
solution: to judge the state of the button multiple times. Only when the button state is stable (consistent) over
a period of time, can it indicate that the button is actually in the ON state (being pressed).

This project needs the same components and circuits as we used in the previous section.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com Il

Code

In this project, we still detect the state of Push Button Switch to control an LED. Here we need to define a
variable to define the state of LED. When the button switch is pressed once, the state of LED will be changed
once. This will allow the circuit to act as a virtual table lamp.

Python Code 2.2.1 Tablelamp

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 02.2.1_Tablelamp directory of Python code

2. Use python command to execute python code “Tablelamp.py”.

When the program is executed, pressing the Button Switch once turns the LED ON. Pressing the Button Switch
again turns the LED OFF.

from gpiozero import LED, Button

import time

led = LED(17) # define LED pin according to BCM Numbering
button = Button(18) # define Button pin according to BCM Numbering

def onButtonPressed(): # When button is pressed, this function will be executed
led. toggle()
if led.is lit :
print ("Led turned on >»>”)
else :
print ("Led turned off <<<”)
def loop():
#Button detect
button. when pressed = onButtonPressed
while True:
time. sleep(1)
def destroy():
led. close()
button. close ()

if name == main_ : # Program entrance
print (Program is starting...’)
try:
Loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.
destroy ()
print ("Ending program”)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com >4 support@freenove.com

In GPIO Zero, you assign the when_pressed and when_released properties to set up callbacks on those actions.

Once it detects that the button is pressed, it executes the specified function onButtonPressed().In the
onButtonPressed function, the led. toggle () function reverses the state of the LED device.If it's on, turn it off;
If it's off, turn it on.Each time the key is pressed, the state of the LED will change once.

def onButtonPressed(): # When button is pressed, this function will be executed
led. toggle ()
if led.is lit :
print ("Led turned on >>>”)
else :

print ("Led turned off <<<”)

def loop():
#Button detect
button. when pressed = onButtonPressed
while True:
time. sleep (1)
To explicitly close a connection to a pin, you can manually call the close() method on a device object:
def destroy():
led. close()
button. close ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

print ("Ending program”)

For more information about the methods used by the Button class in the GPIO Zero library,please refer to:
https://gpiozero.readthedocs.io/en/stable/api_input.ntml#button

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

m X4 support@freenove.com www.freenove.com Il

Chapter 3 LED Bar Graph

We have learned how to control one LED to blink. Next, we will learn how to control a number of LEDs.

Project 3.1 Flowing Water Light

In this project, we use a number of LEDs to make a flowing water light.

Component List

Raspberry Pi (with 40 GPIO) x1 Bar Graph LED x1 Resistor 220Q x10
GPIO Extension Board & Ribbon Cable x1
Breadboard x1

Jumper Wire x 1

— -

Component knowledge

Let us learn about the basic features of these components to use and understand them better.

Bar Graph LED

A Bar Graph LED has 10 LEDs integrated into one compact component. The two rows of pins at its bottom
are paired to identify each LED like the single LED used earlier.

1 20 1—[>§20
2 19 219
3 18 3> 18
4 17 417
5 16 5 16
6 15 6 > 15
7 14 7> 14
8 13 8 > 13
9 12 9 {12
10 11 10-F 11

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4 support@freenove.com

Circuit

A reference system of labels is used in the circuit diagram below. Pins with the same network label are
connected together.

Schematic diagram

. 33V 5V

200 4 2
SDA1 TXDO |8

w0 Fm ScL SCL1 RXDO -0
—L4GPIO4 GPIO18

2200 5 o GPIO17 GPIO17 GPI023 -2 !
GPI027 GP1027 GP1024 -1 GPI024

200, S5 GP1022 GP1022 GPIO25 44 GPI025
-194mosl CEQ

200 ¢ Jm 211IMiso CE1 28
~234SCLK SCLO 28~

200 7 -2L1sDA0 GPIO12}82~
-29.1GPI05 GPI016 |26~

200 -311GpI06 GPI020 }-38—
-331GPI013 GPI1021}40

200 o 2o -32.1GPI019

-—<_SDA —S-LGP|026 Raspberry Pi

200 o S GPIO Extension Shield

0 o GND

2200 44 A i

_e |

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

] st

5Ve O
Ve B
GNDs I
CEO»
CE1e B
SCLO» 0
GNDe 30
e e o
e o o 0 o

GNDe 0
019 GPIO16e N0

TXDO#

RXDO» 3

GND# B3
GP1024s

GNDe I3

06 GPIO12e T

026 GPIO20s £

GPIO21e R0

PR «GND

® © 0 00 0 0 000000 0 00 0 00
P

#GPI022 GPIO23e)

#GPIO17 GPIO18e
#3V3

#GP1027

R S—

Y #3V3

£y #SDA1

Y #SCL1
P #GPIO4
L «GND
e o o 0 o

Raspberry Pi GPIO Extension Shield

If LEDbar doesn’t work, rotate LEDbar 180° to try. The label is random.

In this circuit, the cathodes of the LEDs are connected to the GPIO, which is different from the previous circuit.
The LEDs turn ON when the GPIO output is low level in the program.

Code

This project is designed to make a flowing water lamp, which are these actions: First turn LED #1 ON, then

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

turn it OFF. Then turn LED #2 ON, and then turn it OFF... and repeat the same to all 10 LEDs until the last LED
is turns OFF. This process is repeated to achieve the “movements” of flowing water.

Python Code 3.1.1 LightWater

First observe the project result, and then view the code.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 03.1.1_LightWater directory of Python code.

cd ~/Freenove_Kit/Code/Python_GPI0Zero_Code/03.1.1_LightWater

2. Use Python command to execute Python code “LightWater.py”.

python LightWater.py

After the program is executed, you will see that LED Bar Graph starts with the flowing water way to be turned
on from left to right, and then from right to left.

The following is the program code:

from gpiozero import LEDBarGraph

from time import sleep

#ledPins = [”]J8:117, "J8:12”,7J8:13",7J8:15",7J8:16","J8:18", " J8:22",7J8:3",7J8:5",7J8:24"]
ledPins = [17, 18, 27, 22, 23, 24, 25, 2, 3, 8]

leds = LEDBarGraph (*ledPins, active high=False)

def loop():
while True:

for index in range(0, len(ledPins), 1) : # make led(on) move from left to right
leds. on (index)
sleep(0.1)
leds. of f (index)

for index in range(len(ledPins)-1,-1,-1): #move led(on) from right to left
leds. on (index)
sleep(0.1)
leds. of f (index)

if name == main_ : # Program entrance
print (Program is starting...’)
try:
Loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

print (“"Ending program”)

Import the LEDBarGraph class that controls LED Bar Graph from the gpiozero library.
- from gpiozero import LEDBarGraph
Create the LEDBarGraph class for controlling the LEDBarGraph.

ledPins = [17, 18, 27, 22, 23, 24, 25, 2, 3, 8]

leds = LEDBarGraph (*ledPins, active high=False)
The LED is turned on or off by specifying the index of the LED, if no parameter is specified, the same Settings

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

. www.freenove.com

>4 support@freenove.com

are applied to all leds.

leds.off() means that all leds are turned off.

for index in range(0, len(ledPins), 1) :
leds. on (index)
sleep(0.1)
leds. of f (index)
for index in range(len(ledPins)-1,-1,-1):
leds. on (index)
sleep(0.1)

leds. of f (index)

make led(on) move from left to right

timove led(on) from right to left

In the program, first define 10 pins connected to the LED and set them to output mode. In the loop() function,
two for loops are used to make the lights flow from right to left and from left to right.

def loop():
while True:
for index in range (0, len(ledPins), 1) :
leds. on (index)
sleep(0.1)
leds. of f (index)
for index in range(len(ledPins)-1,-1,-1):
leds. on (index)
sleep(0.1)
leds. of ' (index)

make led(on) move from left to right

timove led(on) from right to left

For more information about the methods used by the LEDBoard class in the GPIO Zero library,please refer to:
https://gpiozero.readthedocs.io/en/stable/api_boards.html#ledboard

For more information about the methods used by the LEDBarGraph class in the GPIO Zero library,please refer
to: https://gpiozero.readthedocs.io/en/stable/api_boards.html#ledbargraph

In this experiment you can use the LEDBoard and LEDBarGraph classes to control the LEDBarGraph

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
https://gpiozero.readthedocs.io/en/stable/api_boards.html#ledboard

X4 support@freenove.com www.freenove.com [l

Chapter 4 Analog & PWM

In previous chapters, we learned that a Push Button Switch has two states: Pressed (ON) and Released (OFF),
and an LED has a Light ON and OFF state. Is there a middle or intermediated state? We will next learn how to
create an intermediate output state to achieve a partially bright (dim) LED.

First, let us learn how to control the brightness of an LED.

Project 4.1 Breathing LED

We describe this project as a Breathing Light. This means that an LED that is OFF will then turn ON gradually
and then gradually turn OFF like "breathing”. Okay, so how do we control the brightness of an LED to create
a Breathing Light? We will use PWM to achieve this goal.

Component List

Raspberry Pi (with 40 GPIO) x1 LED x1 Resistor 220Q x1
GPIO Extension Board & Ribbon Cable x1
Breadboard x1

Jumper Wire

B 1

Component Knowledge

Analog & Digital

An Analog Signal is a continuous signal in both time and value. On the contrary, a Digital Signal or discrete-
time signal is a time series consisting of a sequence of quantities. Most signals in life are analog signals. A
familiar example of an Analog Signal would be how the temperature throughout the day is continuously
changing and could not suddenly change instantaneously from 0°C to 10°C. However, Digital Signals can
instantaneously change in value. This change is expressed in numbers as 1 and 0O (the basis of binary code).
Their differences can more easily be seen when compared when graphed as below.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com

ANALOG DIGITAL

AN N\
7t 7t

Note that the Analog signals are curved waves and the Digital signals are “Square Waves”.

In practical applications, we often use binary as the digital signal, that is a series of 0's and 1’s. Since a binary
signal only has two values (0 or 1) it has great stability and reliability. Lastly, both analog and digital signals
can be converted into the other.

PWM

PWM, Pulse-Width Modulation, is a very effective method for using digital signals to control analog circuits.
Digital processors cannot directly output analog signals. PWM technology makes it very convenient to achieve
this conversion (translation of digital to analog signals).

PWM technology uses digital pins to send certain frequencies of square waves, that is, the output of high
levels and low levels, which alternately last for a while. The total time for each set of high levels and low levels
is generally fixed, which is called the period (Note: the reciprocal of the period is frequency). The time of high
level outputs are generally called “pulse width”, and the duty cycle is the percentage of the ratio of pulse
duration, or pulse width (PW) to the total period (T) of the waveform. The longer the output of high levels last,
the longer the duty cycle and the higher the corresponding voltage in the analog signal will be. The following
figures show how the analog signal voltages vary between 0V-5V (high level is 5V) corresponding to the pulse
width 0%-100%:

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

m B4 support@freenove.com www.freenove.com [l

ANALOG
AU DIGITAL
5V
0% Duty Cycle
0 > .
AU
5V
25% Duty Cycle —‘ —l —l
0 > .
N F'urszn\z(ijdth
5v
50% Duty Cycle T H _‘ (
0 > t
MNU
5v
75% Duty Cycle ‘ '
0 > .
AU
5V —
100% Duty Cycle
0 >

t
The longer the PWM duty cycle is, the higher the output power will be. Now that we understand this
relationship, we can use PWM to control the brightness of an LED or the speed of DC motor and so on.

It is evident, from the above, that PWM is not actually analog but the effective value of voltage is equivalent
to the corresponding analog value. Therefore, by using PWM, we can control the output power of to an LED
and control other devices and modules to achieve multiple effects and actions.

In RPi, GPIO18 pin has the ability to output to hardware via PWM with a 10-bit accuracy. This means that 100%
of the pulse width can be divided into 2"°=1024 equal parts.

The wiringPi library of C provides both a hardware PWM and a software PWM method, while the wiringPi
library of Python does not provide a hardware PWM method. There is only a software PWM option for Python.

The hardware PWM only needs to be configured, does not require CPU resources and is more precise in time
control. The software PWM requires the CPU to work continuously by using code to output high level and

low level. This part of the code is carried out by multi-threading, and the accuracy is relatively not high enough.

In order to keep the results running consistently, we will use software PWM.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4 support@freenove.com

Circuilt
Schematic diagram Hardware connection. If you need any support, please
| | S feel free to contact us via: support@freenove.com
33V 5V

—3.1sDA1 TXDO}-8
—24SCL1 RXDOHY : SRS SR v dewel]s
—L1GPI04 GPIO18}12 - B

1GPIO17 GP|023 6 E ﬁ0""'........".

2{GPI022 GPI025 {22 = e cevess

9{mosI CEO}|&4— & £ cevege
-21IMISO CE1 {28~ o - ,
~234SCLK SCLO |28~ 8 o
~-2L1SDAO GPIO12}32—~ S 2 I R cevebe
-291GPIO5 GPIO16{36—~ = < cecese
-311GPI06 GPI1020 |38 Y el 5 b bebdsth
-331GPI013 GPIo21{40. 2 ¥ B
-35.1GpI019 ‘B R

GP'026 Raspberry P| - e o 0o 0 o .
GPIO Extension Shield
GND %m
220Q

Code

This project uses the PWM output from the GPIO18 pin to make the pulse width gradually increase from 0%
to 100% and then gradually decrease from 100% to 0% to make the LED glow brighter then dimmer.

Python Code 4.1.1 BreathingLED

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 04.1.1_BreathingLED directory of Python code.

cd ~/Freenove_Kit/Code/Python_GPIOZero_Code/04.1.1_BreathingLED

2. Use the Python command to execute Python code “BreathingLED.py”".

python BreathingLED.py

After the program is executed, you will see that the LED gradually turns ON and then gradually turns OFF
similar to “breathing”.

The following is the program code:

1 from gpiozero import PWMLED

2 import time

3

4 led = PWMLED (18 , initial value=0 , frequency=1000)

5 def loop():

6 while True:

7 for b in range(0, 101, 1): # make the led brighter

8 led. value = b / 100.0 # set dc value as the duty cycle

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

m X4 support@freenove.com www.freenove.com Il

time. sleep(0.01)
time. sleep (1)
for b in range(100, -1, —1): # make the led darker
led. value = b / 100.0 # set dc value as the duty cycle
time. sleep(0.01)
time. sleep (1)
def destroy():
led. close()

if name == main : # Program entrance
print (Program is starting ... ')
try:
Loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.
destroy ()

print ("Ending program”)

Import the PWMLED class that controls leds from the gpiozero library.

! from gpiozero import PWMLED l

Create the PWMLED class for controlling the LED.

! led = PWMLED (18 , initial value=0 , frequency=1000) l

PWMLED is connected to GPIO18, and its PWM frequency is set to 1000HZ, and the initial duty cycle to 0%.
led = PWMLED (18 , initial value=0 , frequency=1000) # Set the PWM frequency to 1000Hz and the

. initial duty cycle to 0

There are two “for” loops used to control the breathing LED in the next endless “while” loop. The first loop
outputs a power signal to the led PWM from 0% to 100% and the second loop outputs a power signal to the
led PWM from 100% to 0%.
led.value represents:The duty cycle of the PWM device. 0.0 is off, 1.0 is fully on. led.value in between may be
specified for varying levels of power in the device.
def loop():
while True:
for b in range(0, 101, 1): # make the led brighter
led. value = b / 100.0 # set dc value as the duty cycle
time. sleep(0.01)

time. sleep(1)

for b in range(100, -1, -1): # make the led darker
led. value = b / 100.0 # set dc value as the duty cycle
time. sleep(0.01)

time. sleep(1)

For more information about the methods used by the PWMLED class in the GPIO Zero library,please refer to:
https://gpiozero.readthedocs.io/en/stable/api_output.html#pwmled

For more information about the methods used by the PWMOutputDevice class in the GPIO Zero library,please
refer to: https://gpiozero.readthedocs.io/en/stable/api_output.html#pwmoutputdevice

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com 54 support@freenove.com NG

Chapter 5 RGB LED

In this chapter, we will learn how to control a RGB LED.
An RGB LED has 3 LEDs integrated into one LED component. It can respectively emit Red, Green and Blue
light. In order to do this, it requires 4 pins (this is also how you identify it). The long pin (1) is the common
which is the Anode (+) or positive lead, the other 3 are the Cathodes (-) or negative leads. A rendering of a
RGB LED and its electronic symbol are shown below. We can make RGB LED emit various colors of light and
brightness by controlling the 3 Cathodes (2, 3 & 4) of the RGB LED

4, 1
R G B
I Rt
2] 3 2 3 4
Red, Green, and Blue light are called 3 Primary Colors when discussing light (Note: for pigments such as paints,
the 3 Primary Colors are Red, Blue and Yellow). When you combine these three Primary Colors of light with

varied brightness, they can produce almost any color of visible light. Computer screens, single pixels of cell
phone screens, neon lamps, etc. can all produce millions of colors due to phenomenon.

RGB

If we use a three 8 bit PWM to control the RGB LED, in theory, we can create 2°x2°x2°=16777216 (16 million)
colors through different combinations of RGB light brightness.
Next, we will use RGB LED to make a multicolored LED.

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Project 5.1 Multicolored LED

Component List

Raspberry Pi (with 40 GPIO) x1 RGB LED x1 Resistor 220Q x3
GPIO Extension Board & Wire x1
Breadboard x1 :‘l)

Jumper Wire]

B 1

Circuit

Schematic diagram

3.3V 5V
—31sDA1 TXDO |8
—2.1sCL1 RXDO |10
LEDL —LIGPIO4 GPIO181-12
— — W 11GPI017 GPI023}16
N B I 31GPI027 GPI024 18
W, ~121GPI022 GPI0252
N 200 -19.1mos| CEO
, 2LImiso CE1}2
B ~234SCLK SCLOoja8-
~2L{SDAO GPIO12}32
~291GPIO5 GPIO16 {39
S11GPIo6 GPIO20
-331GPIO13 GP1021}49
-35.1GPIO19
'&LGPIOZG Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

5Ve
RXDOw
L)
e e o o o
® e oo 0
e e o o 0
e e o 00
e e e o0
e e e oo
e e o oo
e e oo
e e e o o
e e o 0o
e e e o o
e e oo o
e e oo o
e e o o o

#GPIO17 GPIO18e

#GPI027

GNDe
TXDOw

Raspberry Pi GPIO Extension Shield

W R R R R R R R R R R EEEREREREEERREERE]

In this kit, the RGB led is Common anode. The voltage difference between LED will make it work. There is

no visible GND. The GPIO ports can also receive current while in output mode.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4 support@freenove.com

If circuit above doesn’t work, the RGB LED may be common cathode. Please try following wiring.
There is no need to modify code for random color.

Sl o
-
<
- K4
 c
- B
- 7
il ©
= B3

S
- B
- w
& o
- X
- O
= o
.
- =
B o
-] Qo
[[-3
= B
= ©
]

Code

We need to use RGBLED class to control RGBLED. The parameters for setting the RGBLED as common cathode
or common anode are provided in the RGBLED class. You can set it according to the type of your RGB LED,
and the default setting in our example code is based on common anode.

Python Code 5.1.1 ColorfulLED

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 05.1.1_ColorfulLED directory of Python code.

cd ~/Freenove_Kit/Code/Python_GPIOZero_Code/05.1.1_ColorfulLED

2. Use python command to execute python code “ColorfulLED.py”.

python ColorfulLED.py

After the program is executed, you will see that the RGB LED randomly lights up different colors.
The following is the program code:

1 from gpiozero import RGBLED

2 import time

3 import random

4

5 #led = RGBLED (red="J8:11", green="J8:12”, blue="J8:13”, active high=False) # define the pins

for R:11,G:12,B:13

6 led = RGBLED (red=17, green=18, blue=27, active high=False) # define the pins for
R:GPI017, G:GPI018, B:GP1027

7 # If your RGBLED is a common cathode LED, set active high to True

def setColor(r val,g val,b val): # change duty cycle for three pins to r val,g val,b val
10 led. red=r val/100 # change pwmRed duty cycle to r val
11 led. green = g val/100 # change pwmRed duty cycle to r val
12 led. blue = b val/100 # change pwmRed duty cycle to r val
13

14 | def Toop():

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

while True :
r=random. randint (0, 100) #get a random in (0, 100)
g=random. randint (0, 100)
b=random. randint (0, 100)
setColor (r, g, b) #iset random as a duty cycle value
print Cr=%d, g=%d, b=%d ’~ %(r ,g, b))
time. sleep (1)

def destroy():
led. close()

if name == main : # Program entrance
print (Program is starting ...)
try:
Loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.
destroy ()
print ("Ending program”)
Import the RGBLED class that controls RGBLED from the gpiozero library.
! from gpiozero import RGBLED
Create the RGBLED class for controlling the RGBLED.
led = RGBLED (red=17, green=18, blue=27, active high=False) # define the pins for
R:GPI1017, G:GPIO18, B:GP1027
In the previous chapter, we learned how to make a pin output PWM using the Python language. In this project,
we output to three pins via PWM. In the "while" loop of the "loop" function, we first generate three random
numbers and then assign these three random numbers to the PWM values of the three pins, which will make
the RGB LED randomly produce multiple colors.
def loop():
while True :
r=random. randint (0, 100) #get a random in (0, 100)
g=random. randint (0, 100)
b=random. randint (0, 100)
setColor (r, g, b) #set random as a duty cycle value
print Cr=%d, g=%d, b=%d ~ %(r ,g, b))
time. sleep(1)

For more information about the methods used by the RGBLED class in the GPIO Zero library,please refer to:
https://gpiozero.readthedocs.io/en/stable/api_output.html#rgbled

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4 support@freenove.com

Chapter 6 Buzzer

In this chapter, we will learn about buzzers and the sounds they make. And in our next project, we will use an
active buzzer to make a doorbell and a passive buzzer to make an alarm.

Project 6.1 Doorbell

We will make a doorbell with this functionality: when the Push Button Switch is pressed the buzzer sounds
and when the button is released, the buzzer stops. This is a momentary switch function.

Component List

Raspberry Pi (with 40 GPIO) x1 Jumper Wire
GPIO Extension Board & Ribbon Cable x1
Breadboard x1

NPN transistorx1 Active buzzer x1 Push Button Resistor 1kQ x1 | Resistor 10kQ x2
(S8050) Switch x1

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

support@freenove.com www.freenove.com [l

Component knowledge

Buzzer

A buzzer is an audio component. They are widely used in electronic devices such as calculators, electronic
alarm clocks, automobile fault indicators, etc. There are both active and passive types of buzzers. Active
buzzers have oscillator inside, these will sound as long as power is supplied. Passive buzzers require an
external oscillator signal (generally using PWM with different frequencies) to make a sound.

Active buzzer Passive buzzer

-+

2

1 1
- 2
T e

Active buzzers are easier to use. Generally, they only make a specific sound frequency. Passive buzzers
require an external circuit to make sounds, but passive buzzers can be controlled to make sounds of various
frequencies. The resonant frequency of the passive buzzer in this Kit is 2kHz, which means the passive
buzzer is the loudest when its resonant frequency is 2kHz.

How to identify active and passive buzzer?

1. As arule, there is a label on an active buzzer covering the hole where sound is emitted, but there are
exceptions to this rule.

2. Active buzzers are more complex than passive buzzers in their manufacture. There are many circuits and
crystal oscillator elements inside active buzzers; all of this is usually protected with a waterproof coating
(and a housing) exposing only its pins from the underside. On the other hand, passive buzzers do not
have protective coatings on their underside. From the pin holes, view of a passive buzzer, you can see
the circuit board, coils, and a permanent magnet (all or any combination of these components
depending on the model.

Active buzzer bottom Passive buzzer bottom
Transistors

A transistor is required in this project due to the buzzer’s current being so great that GPIO of RPi’s output
capability cannot meet the power requirement necessary for operation. A NPN transistor is needed here to

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com

amplify the current.

Transistors, full name: semiconductor transistor, is a semiconductor device that controls current (think of a
transistor as an electronic “amplifying or switching device”. Transistors can be used to amplify weak signals,
or to work as a switch. Transistors have three electrodes (PINs): base (b), collector (c) and emitter (e). When
there is current passing between "be" then "ce" will have a several-fold current increase (transistor
magnification), in this configuration the transistor acts as an amplifier. When current produced by "be" exceeds
a certain value, "ce" will limit the current output. at this point the transistor is working in its saturation region
and acts like a switch. Transistors are available as two types as shown below: PNP and NPN,

PNP transistor NPN transistor
11 E 3]C
P 5 M 5
B B
19283 3|l c 19293 11 E
E B C E B C

In our kit, the PNP transistor is marked with 8550, and the NPN transistor is marked with 8050.

Thanks to the transistor's characteristics, they are often used as switches in digital circuits. As micro-controllers
output current capacity is very weak, we will use a transistor to amplify its current in order to drive components
requiring higher current.

When we use a NPN transistor to drive a buzzer, we often use the following method. If GPIO outputs high
level, current will flow through R1 (Resistor 1), the transistor conducts current and the buzzer will make sounds.
If GPIO outputs low level, no current will flow through R1, the transistor will not conduct currentand buzzer
will remain silent (no sounds).

When we use a PNP transistor to drive a buzzer, we often use the following method. If GPIO outputs low level,
current will flow through R1. The transistor conducts current and the buzzer will make sounds. If GPIO outputs
high level, no current flows through R1, the transistor will not conduct current and buzzer will remain silent
(no sounds). Below are the circuit schematics for both a NPN and PNP transistor to power a buzzer.

NPN transistor to drive buzzer PNP transistor to drive buzzer
= S
(1] 1 R1
2 ||| Buzzer 1kQ
| T Uno Pin AN [Q1
R1
1kQ
Uno Pin AW Q1 (1] 1
2 ||| Buzzer
T

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Circuit

Schematic diagram with RPi GPIO Extension Shield.

4l

=2

T[] R2

3.3V 5V e
—31sDA1 TXDO8—~
5 —2{SCL1 RXDOHO. ke
3 —L1GPI04 GPI0181-12 AMA—$
A A 111GPIO17 GPI023}16
a A34GPIo27 GPI024 {18
124GP1022 GPI025 |22
19ImoslI CEOQ 24~
21imiso CE1}26]
-234SCLK scLopeé~ !
2L1spAo GPIO12}32 :
291GPI05 GPI016}-36~
S11GPIos GP1020}-38
-331GPI013 GP1021 40
ﬁ%emom
(GP1026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

————— A A ® o 0 0 0 0 00
o s]l o ¢ o o o s 0 0 00 e o0 00000

Pt et et bt et
® e 0o 00 ® e o 0 00 0 0

Raspberry Pi GPIO Extension Shield

Note: in this circuit, the power supply for the buzzer is 5V, and pull-up resistor of the push button switch is
connected to the 3.3V power feed. Actually, the buzzer can work when connected to the 3.3V power feed
but this will produce a weak sound from the buzzer (not very loud).

Code

In this project, a buzzer will be controlled by a push button switch. When the button switch is pressed, the
buzzer sounds and when the button is released, the buzzer stops. It is analogous to our earlier project that
controlled an LED ON and OFF.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4l support@freenove.com

Python Code 6.1.1 Doorbell

First, observe the project result, then learn about the code in detail.
If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 06.1.1_Doorbell directory of Python code.

2. Use python command to execute python code “Doorbell.py”.

After the program is executed, press the push button switch and the buzzer will sound. Release the push
button switch and the buzzer will stop.

The following is the program code:

from gpiozero import Buzzer, Button

import time

buzzer = Buzzer (17)

button = Button(18)

def onButtonPressed() :
buzzer. on ()

print ("Button is pressed, buzzer turned on >>>”)

def onButtonReleased():
buzzer. off ()

print ("Button is released, buzzer turned on <<<”)

def loop():
button. when pressed = onButtonPressed
button. when released = onButtonReleased
while True :

time. sleep(1)

def destroy():
buzzer. close ()

button. close ()

if name == main_ : # Program entrance
print (Program is starting ... ')
try:
Loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.
destroy ()

print ("Ending program”)

The code is exactly the same as when we used a push button switch to control an LED. You can also try using

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

the PNP transistor to achieve the same results.
Import the Buzzer class that controls Buzzer from the gpiozero library.

‘ ‘ from gpiozero import Buzzer, Button ‘

Create the Buzzer class for controlling the Buzzer.

‘ | buzzer = Buzzer (17) l

In GPIO Zero, you assign the when_pressed and when_released properties to set up callbacks on those actions.

Once it detects that the button is pressed, it executes the specified function onButtonPressed(). Once it
detects that the button is released, it executes the specified function onButtonReleased()
def loop():

button. when pressed = onButtonPressed

button. when released = onButtonReleased

For more information about the methods used by the Buzzer class in the GPIO Zero library,please refer to:
https://gpiozero.readthedocs.io/en/stable/api_output.html#buzzer

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4l support@freenove.com

Project 6.2 Alertor

Next, we will use a passive buzzer to make an alarm.

The list of components and the circuit is similar to the doorbell project. We only need to take the Doorbell
circuit and replace the active buzzer with a passive buzzer.

Code

In this project, our buzzer alarm is controlled by the push button switch. Press the push button switch and the
buzzer will sound. Release the push button switch and the buzzer will stop.

As stated before, it is analogous to our earlier project that controlled an LED ON and OFF.

To control a passive buzzer requires PWM of certain sound frequency.

Python Code 6.2.1 Alertor

First observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 06.2.1_Alertor directory of Python code.

cd ~/Freenove_Kit/Code/Python_GPIOZero_Code/06.2.1_Alertor
2. Use the python command to execute the Python code “Alertor.py”.
python Alertor.py

After the program is executed, press the push button switch and the buzzer will sound. Release the push
button switch and the buzzer will stop.
The following is the program code:

from gpiozero import TonalBuzzer, Button
from gpiozero. tones import Tone
import time

import math

TonalBuzzer (17)

buzzer

button = Button(18) # define Button pin according to BCM Numbering

def loop():
while True:
if button.is pressed: # if button is pressed
alertor ()
print (alertor turned on >»>>)
else :
stopAlertor ()
print (alertor turned off <<<)
def alertor():
buzzer. play (Tone (220. 0))
time. sleep(0. 1)

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

m X4 support@freenove.com www.freenove.com Il

def stopAlertor():

buzzer. stop ()

def destroy():

buzzer. close ()

if name == main ’: # Program entrance
print (Program is starting...’)
try:
Loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

print ("Ending program”)

Define GPIO17 as the buzzer control pin, and GPIO18 as the button control pin to control the passive buzzer.
It requires a certain frequency of PWM to control a passive buzzer, so the TonalBuzzer class is needed.

buzzer = TonalBuzzer (17)

button = Button(18) # define Button pin according to BCM Numbering

In the while loop loop of the main function, when the push button switch is pressed the subfunction alertor()
will be called and the alarm will issue a warning sound.
def alertor():

buzzer. play (Tone (220. 0))

time. sleep(0. 1)

When the push button switch is released, the buzzer (in this case our Alarm) will stop.

def stopAlertor():

buzzer. stop ()

For more information about the methods used by the TonalBuzzer class in the GPIO Zero library,please refer
to: https://gpiozero.readthedocs.io/en/stable/api_output.ntml#tonalbuzzer

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com D4 support@freenove.com

(Important) Chapter 7 ADC

We have learned how to control the brightness of an LED through PWM and that PWM is not a real analog
signal. In this chapter, we will learn how to read analog values via an ADC Module and convert these analog
values into digital.

Project 7.1 Read the Voltage of Potentiometer

In this project, we will use the ADC function of an ADC Module to read the voltage value of a potentiometer.

Component List

Raspberry Pi x1 Jumper Wire M/M x16
GPIO Extension Board & Ribbon Cable x1
Breadboard x1

Rotary potentiometer x1 | ADC module x1 Resistor 10kQ x2

—-- -

TIA0 - Aﬁi@ , VCC
o HI gsoA
A2
A3
A4

PCF8591

FREENOVE

0 r A7 Freenove GND

This product contains only one ADC module, there are two types, PCF8591 and ADS7830. For the projects
described in this tutorial, they function the same. Please build corresponding circuits according to the ADC
module found in your Kit.
ADC module: PCF8591 ADC module: ADS7830
Model diagram Actual Picture Model diagram Actual Picture

~ ADC
_AD _ADSTE% vce
AT

A2
A3

PCF8591

A4

COM
C N

REF
- = =

A7 Freenove GND

FREENOVE

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Circuit knowledge

ADC

An ADC is an electronic integrated circuit used to convert analog signals such as voltages to digital or binary
form consisting of 1s and 0s. The range of our ADC module is 8 bits, that means the resolution is 2A8=256,
so that its range (at 3.3V) will be divided equally to 256 parts.

Any analog value can be mapped to one digital value using the resolution of the converter. So the more bits
the ADC has, the denser the partition of analog will be and the greater the precision of the resulting conversion.

DIGITAL
N

255
254
253
252
251

O NWARN:

oV 3.3V 7 ANALOG
Subsection 1: the analog in range of 0V-3.3/256 V corresponds to digital O;
Subsection 2: the analog in range of 3.3 /256 V-2*3.3 /256V corresponds to digital 1;

The resultant analog signal will be divided accordingly.

DAC

The reversing this process requires a DAC, Digital-to-Analog Converter. The digital I/O port can output high
level and low level (0 or 1), but cannot output an intermediate voltage value. This is where a DAC is useful.
The DAC module PCF8591 has a DAC output pin with 8-bit accuracy, which can divide VDD (here is 3.3V) into
2°=256 parts. For example, when the digital quantity is 1, the output voltage value is 3.3/256 *1 V, and when
the digital quantity is 128, the output voltage value is 3.3/256 *128=1.65V, the higher the accuracy of DAC,
the higher the accuracy of output voltage value will be.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4 support@freenove.com

Component knowledge

Potentiometer

Potentiometer is a resistive element with three Terminal parts. Unlike the resistors that we have used thus far
in our project which have a fixed resistance value, the resistance value of a potentiometer can be adjusted. A
potentiometer is often made up by a resistive substance (a wire or carbon element) and movable contact
brush. When the brush moves along the resistor element, there will be a change in the resistance of the
potentiometer’s output side (3) (or change in the voltage of the circuit that is a part). The illustration below
represents a linear sliding potentiometer and its electronic symbol on the right.

»

d - 1

1 32 2

Between potentiometer pin 1 and pin 2 is the resistive element (a resistance wire or carbon) and pin 3 is
connected to the brush that makes contact with the resistive element. In our illustration, when the brush
moves from pin 1 to pin 2, the resistance value between pin 1 and pin 3 will increase linearly (until it reaches
the highest value of the resistive element) and at the same time the resistance between pin 2 and pin 3 will
decrease linearly and conversely down to zero. At the midpoint of the slider the measured resistance values
between pin 1 and 3 and between pin 2 and 3 will be the same.

In a circuit, both sides of resistive element are often connected to the positive and negative electrodes of
power. When you slide the brush “pin 3", you can get variable voltage within the range of the power supply.

. R1
Pin 3 10kQ

Rotary potentiometer

Rotary potentiometers and linear potentiometers have the same function; the only difference being the
physical action being a rotational rather than a sliding movement.

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

support@freenove.com www.freenove.com [l

PCF8591

The PCF8591 is a single-chip, single-supply low power 8-bit CMOS data acquisition device with four analog
inputs, one analog output and a serial 12C-bus interface. The following table is the pin definition diagram of

PCF8591.

SYMBOL | PIN | DESCRIPTION TOP VIEW

AINO 1

AN 2 Analog inputs (A/D ter) U

nalog inputs converter

AIN2 3 Vi
AINQ | 1 16| VDD

AIN3 4 ’: :I

AO 5 ANt 2] [15] Aout

Al 6 Hardware address AIN2 E E VREF

A2 7

Vss 8 Negative supply voltage AIN3 [T oF E AGND

; PCF851 .

SDA 9 I2C-bus data input/output AD E EI EXT

SCL 10 | 12C-bus clock input ‘

0oSsC 11 | Oscillator input/output Al E 1__‘] 0sC

EXT 12 | external/internal switch for oscillator input A2 E _1—2] SCL

AGND 13 | Analog ground '

Vref 14 | Voltage reference input Vss E E SDA

AOUT 15 | Analog output(D/A converter)

Vdd 16 | Positive supply voltage

For more details about PCF8591, please refer to the datasheet which can be found on the Internet.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www .freenove.com

support@freenove.com

ADS7830

The ADS7830 is a single-supply, low-power, 8-bit data acquisition device that features a serial 12C interface

and an 8-channel multiplexer. The following table is the pin definition diagram of ADS7830.

SYMBOL PIN DESCRIPTION TOP VIEW

CHO 1

CH1 2

CH2 3

CH3 4 Analog input channels

CH4 5 (A/D converter) 5

CH5 6 CHO | 1 E*VDD

CHE - CH1| 2 15 | SDA
cH2 | 3 14 | scL

CH7 8

o 5 S . CH3 | 4 13 | A1

roun CH4 E 12 | AD
: Internal +2.5V Reference,
REF in/out | 10 . | Ref I CH5 E 11 | com
xternal Reference Input ae 10| REF ./ REF oy,
COM 11 Common to Analog Input Channel . IZ 5 | e
A0 12
Hardware address

Al 13

SCL 14 Serial Clock

SDA 15 Serial Sata

+VDD 16 Power Supply, 3.3V Nominal

|2C communication

I2C (Inter-Integrated Circuit) has a two-wire serial communication mode, which can be used to connect a

micro-controller and its peripheral equipment. Devices using 12C communications must be connected to the

serial data line (SDA), and serial clock line (SCL) (called 12C bus). Each device has a unique address which can

be used as a transmitter or receiver to communicate with devices connected via the bus.

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

m X4 support@freenove.com

www.freenove.com [l

Circuit with ADS7830

Schematic diagram

3.3V
2
VCC
ADC
3 A1 SDA|
! A2 SCL|

A3
A4
A5 COM
REF

D1
ADS7830
DO

LT

Freenove

3. '%_
3.3V 5V
SDA1 TXDO }—8—
5CL1 RXDO 10—
—LAGPI04 GPIO18 |12~
~AL1GPI017 GPI023 |16
-13.1GPI1027 GPI024 |18
121GP1022 GPI025 |22
19 ImosI CEOQ}24—
21Imiso CE1}26
231scLK scLo28.
2L1sSpA0 GPIO12}32
291GPI05 GPI016 |36~
S1liGprios GPI020 38—
33 1GPIO13 GPI021}40
% GPIO19
GPI026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com
This product contains only one ADC module.

Raspberry Pi GPIO Extension Shield

.

L]
® ® 0 0 0 0 0 0 00
® ® 0 0 0 0 0 0 00
® ® 0 0 0 0 0 0 0 0
® ® & 0 o 0 0 0 0 0
® 0 o 0 0 0 0 0 00
® ® o o 0

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com >4 support@freenove.com

Circuit with PCF8591

Schematic diagram

33V
-t ngg r S
e AAA N — | SDA1 TXDO |8
= S 1scL1 RXDO |10
. —L1GPIO4 GPIO18 112
i . ALlGPI017 GPI1023}16
- A131GPI027 GPI1024 |18
T T 15.1GPI1022 GPI025 {22
—tap T —Ji‘MOS| CEO 24
et AIN2 Vref] - -ZJ—‘MISO CE1 ol
w1t AIN3 Agndj——lll 23.1sCLK SCLO 28~
0 ExT 2L1SDA0 GPIO12}32-
—a_ osol— 291GPI05 GPIO16 |35
e S1IGPIO6 GPI020}38_
Vs SOA 331GPIO13 GPI1021}40.
%GPIOW
GPIO26 Raspberry Pi
B GPIO Extension Shield
GND

Hardware connection

B S
-y 2
- —
= B
- c
= O
- (7]
- &
- D

K
- x
- W
= o
- B
L O
- O
. o
- =
- ']
- L2
- Q.
- [7/]
- 3]
- A

Please keep the chip mark consistent to make the chips under right direction and position.

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

The 12C interface in Raspberry Pi is disabled by default. You will need to open it manually and enable the 12C
interface as follows:

Type command in the Terminal:

sudo raspi-config

Then open the following dialog box:

—— 1 Raspberry Pi Software Configuration Tool (raspi-config) b—

1 Change User Password Change password for the current u
2 Network Options Configure network settings

3 Boot Options Configure options for start-up

4 Localisation Options Set up language and regional sett
5 Interfacing Options Configure connections to peripher
6 Overclock Configure overclocking for your P
7 Advanced Options Configure advanced settings

8 Update Update this tool to the latest ve
9 About raspi-config Information about this configurat

=Select> <Finish>

Choose “5 Interfacing Options” then “P5 12C" then “Yes” and then “Finish” in this order and restart your RPi.
The 12C module will then be started.

Type a command to check whether the 12C module is started:

lsmod | grep i2c

If the 12C module has been started, the following content will be shown. “bcm2708" refers to the CPU model.
Different models of Raspberry Pi display different contents depending on the CPU installed:

pi@raspberrypi:

|'||
12¢
pi@raspberrypi:

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

Next, type the command to install I2C-Tools. It is available with the Raspberry Pi OS by default.
sudo apt-get install i2c-tools

I2C device address detection:

i2cdetect -y 1

When you are using the PCF8591 Module, the result should look like this:

pi@raspberrypi:

o 1 2 32 4

Here, 48 (HEX) is the 12C address of ADC Module (PCF8591).

When you are using ADS, the result should look like this:

pl@raspberrypl: i2 tect -y 1
I 5 6

Here, 4b (HEX) is the 12C address of ADC Module (ADS7830).

sudo apt-get install python-smbus
sudo apt-get install python3-smbus

For Python code, ADCDevice requires a custom module which needs to be installed.
1. Use cd command to enter folder of ADCDevice.

cd ~/Freenove_Kit/Libs/Python-Libs/

2. Unzip the file.

tar zxvf ADCDevice-1.0.3.tar.gz

3. Open the unzipped folder.

cd ADCDevice-1.0.3

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

4. Install library for python3 and python2.
sudo python3 setup.py install
sudo python2 setup.py install

A successful installation, without error prompts, is shown below:

Execute the following command. Observe the project result and then learn about the code in detail.
If you have any concerns, please contact us via:

1. Use cd command to enter 07.1.1_ADC directory of Python code.

cd ~/Freenove_Kit/Code/Python_GPIOZero_Code/07.1.1_ADC

2. Use the Python command to execute the Python code “ADC.py”".

python ADC.py

After the program is executed, adjusting the potentiometer will produce a readout display of the
potentiometer voltage values in the Terminal and the converted digital content.

The following is the code:

1 import time

from ADCDevice import *

adc = ADCDevice() # Define an ADCDevice class object

def setup():
global adc
if (adc. detectI2C(0x48)): # Detect the pcf8591.
adc = PCF8591 ()

© 0 N O O1 &= W D

10 elif (adc. detectI2C(0x4b)) : # Detect the ads7830
11 adc = ADS7830()

12 else:

13 print(

14

—_
()]
~

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com D4 support@freenove.com

exit(-1)

def loop():
while True:
value = adc. analogRead (0) # read the ADC value of channel 0
voltage = value / 255.0 % 3.3 # calculate the voltage value
print (ADC Value : %d, Voltage : % 2f %(value, voltage))
time. sleep(0. 1)

def destroy():

adc. close()

if name == main ': # Program entrance
print (Program is starting ...)
try:
setup()
loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

In this code, a custom Python module "ADCDevice" is used. It contains the method of utilizing the ADC
Module in this project, through which the ADC Module can easily and quickly be used. In the code, you need
to first create an ADCDevice object adc.
! adc = ADCDevice() # Define an ADCDevice class object
Then in setup(), use detecticlC(addr), the member function of ADCDevice, to detect the 12C module in the
circuit. Different modules have different 12C addresses. Therefore, according to the address, we can determine
which ADC Module is in the circuit. When the correct module is detected, a device specific class object is
created and assigned to adc. The default address of PCF8591 is 0x48, and that of ADS7830 is Ox4b.
def setup():
global adc
if (adc. detectI2C(0x48)): # Detect the pcf8591.
adc = PCF8591 ()
elif (adc. detectI2C(0x4b)): # Detect the ads7830
adc = ADS7830()

else:

print ("No correct 12C address found, \n”
“Please use command ’i2cdetect -y 1’ to check the 12C address! \n”
“Program Exit. \n”);

exit(-1)

When you have a class object of a specific device, you can get the ADC value of the specified channel by
calling the member function of this class, analogRead(chn). In loop(), get the ADC value of potentiometer.
- value = adc. analogRead (0) # read the ADC value of channel 0 ‘

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Then according to the formula, the voltage value is calculated and displayed on the terminal monitor.

voltage = value / 255.0 % 3.3 # calculate the voltage value
print (ADC Value : %d, Voltage : % 2f %(value, voltage))
time. sleep(0. 1)

Reference
About smbus Module:

The System Management Bus Module defines an object type that allows SMBus transactions on hosts
running the Linux kernel. The host kernel must support 12C, 12C device interface support, and a bus adapter
driver. All of these can be either built-in to the kernel, or loaded from modules.

In Python, you can use help(smbus) to view the relevant functions and their descriptions.
bus=smbus.SMBus(1): Create an SMBus class object.

bus.read_byte_data(address,cmd+chn): Read a byte of data from an address and return it.
bus.write_byte_data(address,cmd,value): Write a byte of data to an address.

This is a base class.

int detectI2C(int addr);

This is a member function, which is used to detect whether the device with the given 12C address exists. If
it exists, it returns true. Otherwise, it returns false.

These two classes are derived from the ADCDevice and the main function is analogRead(chn).

int analogRead (int chn) ;
This returns the value read on the supplied analog input pin.
Parameter chn: For PCF8591, the range of chnis 0, 1, 2, 3. For ADS7830, the range is 0,1, 2, 3,4, 5, 6, 7.

You can find the source file of this library in the folder below:
~/Freenove_Kit/Libs/Python-Libs/ADCDevice-1.0.3/src/ADCDevice/ADCdevice.py

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com D4 support@freenove.com

Chapter 8 Potentiometer & LED

Earlier we learned how to use ADC and PWM. In this chapter, we learn to control the brightness of an LED by
using a potentiometer.

Project 8.1 Soft Light

In this project, we will make a soft light. We will use an ADC Module to read ADC values of a potentiometer
and map it to duty cycle ratio of the PWM used to control the brightness of an LED. Then you can change the
brightness of an LED by adjusting the potentiometer.

Component List

Raspberry Pi x1 Jumper Wire M/M x17
GPIO Extension Board & Ribbon Cable x1
Breadboard x1

Rotary Potentiometer x1 | ADC Module x1 (Only one) 10kQ x2 | 220Q x1 | LED x1

—-- -

L_AD
PCF8591 UAT
A2
A3 D1
A4 DO
A5 COM
 EEEE
A7 Fr;m;veCND

FREENOVE

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

www.freenove.com .

X4 support@freenove.com

Circuit with ADS7830

Schematic diagram

(.8
e
k-
El.
18
{22
(24
{26
28
(32
{36
(38
40

RSCRISHNINERN o3
XX00000000000 &g
FXXanooo Paoan g5

— OJOIVIV)] Q000 @
n Q <
%3
i > 5
) @ =
o3 ™ © w
o9
oooono &

NOO0O00O0

GND

[

ADC
ADS7830
Freenove

=y A1
i A2
=1 A3
=y A4
=4 A5
=1 A6
=1 A7

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

*aND 11J5®
®AS Lvyase
®AS ENE®

PI21Ys uoisualx3 OIdo Id Aiaqdsey

oo 0 00 oo 0 0 0 T
oo 0 00 oo 0 0 0)
oo 0 00 oo 0 00 T
e o 0 00 oo 0 00
° oo
.-é'.
oo 0 0 0 oo 0 00 o
e o 0 00 ®o 0o 0 00 o
* o ¢ ISR
e o0 00 e 0o 0 0 0
e 0 oo 0 00 o
LRI oo 0 00 oo
* » GEEEEEEEEEEEEEEEENNND ©
. LY oo 0 00 o
.) oo 000 o
° LRI oo 0 00
. . * CEEEENENND
N ° .
T . .
oo .
o0 0 .
o0
TR .
T °
e 0o 0 00 ® o 0 0 °
oo 0 00 T °
° o 0 ° .
e .
B #0201d9 9z01d49* L .
LY #910149 6101d9* L .
Y saND £10149* (I .
(3 #7101d9 90149 LI .
I *aND 50140 R .
Y #0105 ovase B
» » QER! anos R
R %035 ose B
0 #5701d9 0STW*
Y eanD 1sone B
Y *v701d0 cAee R
B #£701dD 720149* [
Y *aND 220149
] #310149 L1019 L
Ry s0axy anoe B
3 %0ax1 014D RN
e .
o
o e

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
mailto:support@freenove.com

B www .freenove.com

>4 support@freenove.com

Circuit with PCF8591

Schematic diagram

Py 2

AINO

AIN2
AIN3
A0

1

A2
Vss

PCF8591
AIN1

1
Freenove

VDD
Aouty=—=
Vrefy——=—s

Agnd|
EXT j—| I |
0SCp—=
L

"

10kQ

:

R2
10kQ

3.3V

SDA1

SDA

R1

220Q

—_
—NO1W

SCL1
GPI04
GPIO17

LEDI

GPIO27

GPIO22

REBRRENSRE6E

MOSI
‘MISO
SCLK
SDAO
GPIO5
GPIO6
GPIO13
GPIO19

5V

TXDO
RXDO
GPIO18
GPI1023
GP1024
GPIO25
CEO
CE1
SCLO
GPIO12
GPIO16
GPI1020
GPIO21

GPIO26 Raspberry Pi
GPIO Extension Shield
GND

PEERERRRRRIEF

Hardware connection

Raspberry Pi GPIO Extension Shield

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

m X4 support@freenove.com www.freenove.com [l

Code

Python Code 8.1.1 Softlight

If you did not configure 12C, please refer to Chapter 7. If you did, please continue.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 08.1.1_Softlight directory of Python code

cd ~/Freenove_Kit/Code/Python_GPI0Zero_Code/08.1.1_Softlight
2. Use the python command to execute the Python code “Softlight.py”.

python Softlight.py

After the program is executed, adjusting the potentiometer will display the voltage values of the
potentiometer in the Terminal window and the converted digital quantity. As a consequence, the brightness

of LED will be changed.

The following is the code:

from gpiozero import PWMLED
import time

from ADCDevice import *

led

adc

PWMLED (17, frequency=1000) # define LED pin according to BCM Numbering
ADCDevice() # Define an ADCDevice class object

def setup():
global adc
if (adc. detectI2C(0x48)): # Detect the pcf8591.
ade = PCF8591 ()
elif (adc. detectI2C(0x4b)): # Detect the ads7830
ade = ADS7830()
else:
print ("No correct 12C address found, \n”
“Please use command ’i2cdetect -y 1’ to check the 12C address! \n”

“Program Exit. \n”);

exit(-1)
def loop():
while True:
value = adc. analogRead (0) # read the ADC value of channel 0
led. value = value / 255.0 # Mapping to PWM duty cycle

voltage = value / 255.0 % 3.3 # calculate the voltage value
print (ADC Value : %d, Voltage : % 2f %(value, voltage))
time. sleep (0. 03)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com >4l support@freenove.com

def destroy():
led. close()

adc. close()

if name == main ’': # Program entrance
print (Program is starting ... ')
try:
setup ()
Loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

print ("Ending program”)

In the code, read ADC value of potentiometers and map it to the duty cycle of the PWM to control LED
brightness.

. value = adc. analogRead (0) # read the ADC value of channel 0

led. value = value / 255.0 # Mapping to PWM duty cycle

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

m X4 support@freenove.com www.freenove.com Il

Chapter 9 Potentiometer & RGBLED

In this chapter, we will use 3 potentiometers to control the brightness of 3 LEDs of RGBLED to create multiple

colors.

Project 9.1 Colorful Light

In this project, 3 potentiometers are used to control the RGB LED and in principle it is the same as with the
Soft Light. project. Namely, read the voltage value of the potentiometer and then convert it to PWM used to
control LED brightness. Difference is that the previous soft light project needed only one LED while this one
required (1) RGB LEDs.

Component List

Raspberry Pi x1 Jumper Wires M/M x17
GPIO Extension Board & Ribbon Cable x1
Breadboard x1

—-- -

Rotary potentiometer x3 | ADC module x1 10kQ x2 | 220Q x3 | RGB
- LEDx1
JAD
PCF8591 CAT
A2 M
A3 D1 Q
A4 DO
A5 COM
FREENOVE EEEN
A7 Freenove GND

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

0
2
6
8

1 22
124
126
28
32
36
38
140

TXDO
RXDO
GPIO18
GP1023
GPI1024
GP1025
CEO
CE1
SCLO
GPI012
GPIO16
GP1020
GP1021

5V

€
0
Q
o
>
0
C
[
O
—
=
©
—
o)
Q
Q
-]
wn

GND

3.3V

3.3V

GPIO Extension Shield

—

R6
220Q
R5
220Q
220Q

R4

|

D1

VCC
SDA|
SCL
DOy
COMp—=
REF—=
GND

ADC
ADS7830
Freenove

A0
A1
A2
=1 A3
=1 A4
=1 A5
=1 A6
= A7

¥
b

=
=

(a2}

NV

(a2}

A%

3.3V

B www.freenove.com
Schematic diagram

Circuit with ADS7830

D R I R A O I A

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

#0Z0Idd 9Z0IdO*
%9101d9 6L0IdO®
*OND €LOIdO®
ZL0IdD 90Id9
*aND SOIdO®
#0105 ovas*
13) aNo
*03) XI5
#S701d9 OSIN®

PIa1yS uoisuaix3 OId Id Aiaqdsey

Peoo
LI

..'-'
e oo e

U I
LR

I

AL
o e e
s e o0
LI A

e e e e
¢ e e 00
DI]
LI I]

If circuit above doesn’t work, please try following wiring.

Veoo
LI

support@freenove.com [l

| K]
* e e

$Z1L0IdD 90149%
*aND S01d9®
*010S ovase
*13D ang®
%030 AJse
#S70IdD OSIN®
*aND

*Z0IdD

®E€70IdD 2Z0ld9*
N9 [ZOId9®
#8L0IdD LLOId9®
*00Xd anN9®
*0ax1

*aN9

OAS

PIBIYS UoISURIXT OIdO Id Aueqdsey

| K
v e e

LR oottl
e e

e e

DI S
U S

e e

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Circuit with PCF8591

Schematic diagram

3.3V
2.3 1 1AINO vdd |18 -
mi ; AIN1 Aout% '
SN | [aanol 2 20
o el ||I %a 3 1SDA1 R TXDO -8~
“‘l e ser o yol 5 1sc RXDO |10~
R 8 tvss _sDAl-2 [1GPIO4 GPIO18 (12—
.._\/\/\/\,:_||| PCFg0T 111Gpi017 GPI023 |16
131GPI1027 GPI024 |18
I 15 1GP1022 GPI025 |22
ml 19 Imosi CEQ 24—
21ldmiso CE1}26.
N—\/\/\/\/;—“l -231SCLK SCLO}-28-
ar Ko ~2L1SDAO GPIO12 {32
=S 29.1GPI0O5 GPIO16 |36~
o K0 311GPI06 GPIO20}38—
B ——wn- 331GPI013 GPI021 40
. n M -321GPIO19
R N ~3L{GPI026 Raspberry Pi
GPIO Extension Shield
GND

[l

o o an]l o o

Raspberry Pi GPIO Extension Shield

LR A LI A .

® o o 0 ® o o 0 ©

R 11T HTE)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com >4 support@freenove.com el

Code

Python Code 9.1.1 ColorfulSoftlight

If you did not configure 12C, please refer to Chapter 7. If you did, please continue.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 09.1.1_ColorfulSoftlight directory of Python code.

2. Use python command to execute python code "ColorfulSoftlight.py"”.

After the program is executed, rotate one of the potentiometers, then the color of RGB LED will change. The
Terminal window will display the ADC value of each potentiometer.
The following is the program code:

from gpiozero import RGBLED
import time

from ADCDevice import *

led = RGBLED (red=22, green=27, blue=17, active high=False) # define the pins for

R:GP1022, G:GP1027, B:GP1017

#led = RGBLED (red="J8:15", green="J8:13", blue="J8:11") # according to BOARD Numbering define
the pins for R:11,G:12,B:13

adc = ADCDevice() # Define an ADCDevice class object

def setup():

global adc

if (adc. detect12C(0x48)) : # Detect the pcf8591.
ade = PCF8591 ()

elif (adc. detectI2C(0x4b)): # Detect the ads7830
ade = ADS7830()

else:
print ("No correct 12C address found, \n”
“Please use command ~i2cdetect -y 1’ to check the 12C address! \n”
“Program Exit. \n”);

exit(-1)

def loop():
while True:
value Red = adc. analogRead (0) # read ADC value of 3 potentiometers
value Green = adc. analogRead (1)

value Blue = adc. analogRead (2)

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

led.red =value Red/255 # map the read value of potentiometers into PWM value and
output it

led. green =value Green/255

led. blue =value Blue/255

print read ADC value

print (ADC Value
value Red: %d , \tvlue Green: %d , \tvalue Blue: %d %(value Red, value Green, value Blue))

time. sleep (0. 01)

def destroy():
adc. close ()
led. close()

if name == main ’: # Program entrance
print (' Program is starting ... ")
setup ()
try:
loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

print ("Ending program”)

In the code you can read the ADC values of the 3 potentiometers and map it into a PWM duty cycle to control
the 3 LED elements to vary the color of their respective RGB LED.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com eSS

Chapter 10 Photoresistor & LED

In this chapter, we will learn how to use a photoresistor to make an automatic dimming nightlight.

Project 10.1 NightLamp

A Photoresistor is very sensitive to the amount of light present. We can take advantage of the characteristic
to make a nightlight with the following function. When the ambient light is less (darker environment), the LED
will automatically become brighter to compensate and when the ambient light is greater (brighter
environment) the LED will automatically dim to compensate.

Component List

Raspberry Pi x1 Jumper Wires M/M x15
GPIO Extension Board & Ribbon Cable x1
Breadboard x1

Photoresistor x1 ADC module x1 10kQ x3 | 220Q x1 | LED x1

—-as -

~ ADC
L_IAQ ADS7830 \

. EHEE
A2 SCL

PCF8591

A3 D1

A4 DO
A5 COM
 EEEN
A7 Fra-sm.we GND

FREENOVE

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Component knowledge
Photoresistor

A Photoresistor is simply a light sensitive resistor. It is an active component that decreases resistance with
respect to receiving luminosity (light) on the component's light sensitive surface. A Photoresistor’s resistance
value will change in proportion to the ambient light detected. With this characteristic, we can use a
Photoresistor to detect light intensity. The Photoresistor and its electronic symbol are as follows.

1 2

The circuit below is used to detect the change of a Photoresistor’s resistance value:

R2
10kQ R1
Pin
Pin
R1 R2

In the above circuit, when a Photoresistor’s resistance vale changes due to a change in light intensity, the
voltage between the Photoresistor and Resistor R1 will also change. Therefore, the intensity of the light can
be obtained by measuring this voltage.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

105

B www.freenove.com DX support@freenove.com

Circuit with ADS7830

The circuit used is similar to the Soft light project. The only difference is that the input signal of the AINO pin
of ADC changes from a Potentiometer to a combination of a Photoresistor and a Resistor.

Schematic diagram

3.3V
3.3V g
J 33V 5V
R4 A0 vce
10kQ ety TR o 3 ISDA1 TXDO }-8—
"l i 2.1sCL1 RXDO Q.
—n = —LAGPI04 GPIO18}-12—
N e GPIO17 GP1023 16
. - A131GPI027 GPI1024 |18
s REF -12.1GPI1022 GPI025}22—
] Freenove —]iMOSI CEO-ZL
RS 21IMISO CE1 plie
231SCLK SCLO }-28-
2L1SDA0 GPIO12}32
29 1GPIO5 GPIO16}-36
S311GPIO6 GP1020}-38
33 1GPIO13 GPI021 40
i e -32.1GPIO19
- - -3L1GPI026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

- e o o 0 o o o . . o o 0 . . o e
= o e o 0o 0 e o 0 . . o o 0 e o 0 00 o e
= e

- &

- (72

- c . e e o 0 0 e o 0 0 00
= o . ® o 0 0 0 0 ® o 0o 0 0 o
- 0 D e e e e e e o 0o 0 00
= d:) :\-‘ .. . ® ¢ o 0 0 0
= x 9 “ggg e o o 0o 0 0
- w ':-5

el o i

= % _____ (=] gﬁgg ®e o 0 0 0 0
- — = o o NN e e o000
- o o

- ° oo o 0 00 @ e 0 0 0 0 0
- Q o o o .. ® o000 0 0
= _8 - . e e 0 0 0 0
- =%

- (]

- o

- 14

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Circuit with PCF8591

The circuit used is similar to the Soft light project. The only difference is that the input signal of the AINO pin
of ADC changes from a Potentiometer to a combination of a Photoresistor and a Resistor.

Schematic diagram

3.3V

MM~
R4
Tgkﬁ 10kQ 5 3.3V 5V
—@—1 AINO VDD ® SDA1 TXDO |8~
N Peis o T I S 1SCL1 RXDO |10
Tt it | —11LGPIO4 GPIO18 é
1 AIN3 Agnd | GPIO17 GPI1023
A0 EXT:l_I 131GPI027 GPI1024 18
D iy - 121GPI022 GPI025|-22
° Freenay®: <o 191 MOSI CEO 124
o ves SoA 21IMISO CE1}26
i 231scLK SCLO |28~
5 2L1spAao GPIO12}32
- Lep1 -291GPI05 GPIO16 {36~
- -S311GPIO6 GPI020}-38
-331GPI1013 GP1021 40
%GPIOW
. (GP1026 Raspberry Pi
GPIO Extension Shield
. GND
220Q

Hardware connection

3
2
£
(%)
c o o 0 GED o o o o e o 0
o LI BN o GED GED ¢ o o o o 0
) o006 e e e 000000 o o o
c ams
@ ZoNAN (30O O 0O00O0O0 o o 0
k-] [e)=]
x O == o o [o o 0
w a. o. x Z
o Lo m mn
p— ~o g &
o oo~) ©
o .9.9,,, m e o 0
ot oo [0} (o} o o 0
o OO m

200 . e o 0
? LI . e o 0
g oo' . o o o
Q.
(2]
©
14

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [iorg

Code

The code used in this project is identical with what was used in the last chapter.

Python Code 10.1.1 Nightlamp

If you did not configure 12C, please refer to Chapter 7. If you did, please continue.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 10.1_Nightlamp directory of Python code.

cd ~/Freenove_Kit/Code/Python_GPI0Zero_Code/10.1.1_Nightlamp
2. Use the python command to execute the Python code “Nightlamp.py”.
python Nightlamp.py

After the program is executed, if you cover the Photoresistor or increase the light shining on it, the brightness
of the LED changes accordingly. As in previous projects the Terminal window will display the current input
voltage value of ADC module AO pin and the converted digital quantity.

The following is the program code:

from gpiozero import PWMLED
import time

from ADCDevice import *

ledPin = 17 # define ledPin
led = PWMLED (ledPin)
adc = ADCDevice() # Define an ADCDevice class object

def setup():

global adc

if (adc. detectI2C(0x48)): # Detect the pcf8591.
ade = PCF8591 ()

elif (adc. detectI2C(0x4b)): # Detect the ads7830
ade = ADS7830()

else:
print ("No correct 12C address found, \n”
“Please use command ’i2cdetect -y 1’ to check the 12C address! \n”
“Program Exit. \n”);

exit(-1)

def loop():
while True:
value = adc. analogRead (0) # read the ADC value of channel 0
led. value = value / 255.0 # Mapping to PWM duty cycle
voltage = value / 255.0 % 3.3
print (ADC Value : %d, Voltage : % 2f %(value, voltage))
time. sleep (0. 01)

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

def destroy():
led. close()

adc. close()

if name == main ’': # Program entrance
print (Program is starting ... ')
setup ()
try:
loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.
destroy ()

print ("Ending program”)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com IS

Chapter 11 Thermistor

In this chapter, we will learn about Thermistors which are another kind of Resistor.

Project 11.1 Thermometer

A Thermistoris a type of Resistor whose resistance value is dependent on temperature and changes in
temperature. Therefore, we can take advantage of this characteristic to make a Thermometer.

Component List

Raspberry Pi x1 Jumper Wire M/M x14

GPIO Extension Board & Ribbon Cable x1

—-- -
Breadboard x1
Thermistor x1 ADC module x1 Resistor 10kQ x3

Y ADC
JAD Be, VOE

PCF8591 e EEEN
A2 scL

A3 D1
A4 DO
A5 COM
EEEE
A7 Fra-sm.we GND

FREENOVE

Component knowledge

Thermistor

Thermistor is a temperature sensitive resistor. When it senses a change in temperature, the resistance of the
Thermistor will change. We can take advantage of this characteristic by using a Thermistor to detect
temperature intensity. A Thermistor and its electronic symbol are shown below.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

The relationship between resistance value and temperature of a thermistor is:
Rt=R*EXP [B*(1/T2-1/T1)]

Where:

Rt is the thermistor resistance under T2 temperature;

R is in the nominal resistance of thermistor under T1 temperature;

EXP[n] is nth power of g;

B is for thermal index;

T1, T2 is Kelvin temperature (absolute temperature). Kelvin temperature=273.15 + Celsius temperature.
For the parameters of the Thermistor, we use: B=3950, R=10k, T1=25.
The circuit connection method of the Thermistor is similar to photoresistor, as the following:

5V

R2
10kQ

Pin AO

R1

We can use the value measured by the ADC converter to obtain the resistance value of Thermistor, and then
we can use the formula to obtain the temperature value.
Therefore, the temperature formula can be derived as:

T2 = 1/(1/T1 + In(Rt/R)/B)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com < support@freenove.com [EMENI

Circuit with ADS7830

The circuit of this project is similar to the one in last chapter. The only difference is that the Photoresistor is
replaced by the Thermistor.

Schematic diagram

3. ”»_
33 _
J 3.3V 5V
R4 A0 vce
10kQ P 3 1SDA1 TXDO =8~
- col S1SCL1 RXDO }-10.
—x e o —L1GPI0O4 GPIO18}12-
g P Ll . e GPION7 GPI023 |16
S conf— =iaeGPI027 GPI024 |18
e rerl— =124GPIO22 GPI025 (22—
s T 19 ImoslI CEO |24
21IMISO CE1}28-~
231SCLK SCLO}28-
2L1SDA0 GPIO12}32-
29 1GPI05 GPIO16 35—
. 31llGpios GP1020}38_
= 331GPI013 GPI021}40_
L -321GPI019
- GPI1026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

— ke o o o o 0 0 0
=y 2

- =

- ()

- c ® o o 0 0 00 . e ®o o 0o 0 00 e e o 0 00 0 00 e o0 00 0 00
- o oo 0 00 00 . e 0o 0 0 00 e o 0 0 0 0 0 0 0 o0 000 0 0
— 0 JIEXXEXX) ° "SI XX YK o0 0 00 00 e o 0o 000 0 0
- 5 98833‘:&’3 Y SRl isbe o O o o0 000 00
- B ZRRoZoco0Z0 OZ6Z600 $82%8%8¢%

- X VeSO (2R A o ® o0 000 00
- w o oo o o ooo o |

- o O VLY O O VLU 8 |%5

-y = NS e mo o g -

- o S oA NWOWe—v—AN ® o -

- —O0OAQn000 o S00000An (IR~ 5 O (s © o 00 0 0 0 0
- (D il — = =) wv L bt b bt bt bt o & 89950

-) vaZao0a=S9= aofoooo 2 00800068 o o 0o 0 0 0 0 @
- o . {CACICICIT I VLLOLVLLOLVLLVLLY

- ‘R RERERER X 0 ‘X ERERR RS o0 00 0 & ° o 0 00 0 00
= ? ¢ e 0 0 00 . o e 0 0 00 e e 8 _ow . e e 0000 00
E g -*ooo' . o 0 0 0 0 - @ o 0o 0 000 00
- Q.

™ (]

- ©

) o oo @ eoe e e e e
- o o o o o o o

Thermistor has longer pins than the one shown in circuit.

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com

www.freenove.com [l

Circuit with PCF8591

The circuit of this project is similar to the one in the last chapter. The only difference is that the Photoresistor

is replaced by the Thermistor.

Schematic diagram

B BL 3 BL
i ' R2 |
o !fgkn % o 3.3V 5V
3 AINO VDD "
P LW N § 3 1SsDA1 TXDO }—3—
W s vref 2 1SCL1 RXDO O
S Mg L1GPI04 GPIO18 |12~
o eI JtlGrio17 Gpio23H6-
—at . oscl— -134GPI027 GPI024 (18—
TSNS ot -121GPI1022 GPI025|22—
&—1 vss SDA J-Q—‘MOSI CEO b .
21Imiso CE1}26
231scLK SCLO}-28-
- - -2L1SDAO GPIO12}32—
= 291GPI05 GPIO16|36
S11GPIos GP1020 /38
-331GPI013 GPI021}40_
%‘GPIOW
GP1026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support,

please feel free to contact us via: support@freenove.com

TXDO0» R0
RXD0s R0

) «GPI104
'Y o«GND

GNDe X0
B #GPI022 GPIO23e BRC
GPI024e X

P oGPI027
Y @3V3

Raspberry Pi GPIO Extension Shield

GNDe EXC

Py #GPIOS

LR O 16S840d O K]

Thermistor has longer pins than the one shown in circuit.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

In this project code, the ADC value still needs to be read, but the difference here is that a specific formula is
used to calculate the temperature value.

If you did not configure 12C, please refer to Chapter 7. If you did, please continue.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via:

1. Use cd command to enter 11.1.1_Thermometer directory of Python code.

cd ~/Freenove_Kit/Code/Python_GPIOZero_Code/11.1.1_Thermometer
2. Use python command to execute Python code “Thermometer.py”.

python Thermometer.py

After the program is executed, the Terminal window will display the current ADC value, voltage value and
temperature value. Try to “pinch” the thermistor (without touching the leads) with your index finger and thumb
for a brief time, you should see that the temperature value increases.

§ ue @ 107, V : 1.38, Temperature

=

1
1
1
1
1
1
1
1
1
1
1
1
1.

The following is the code:

1 import time

2 import math

3 from ADCDevice import *

4

5 adc = ADCDevice() # Define an ADCDevice class object
6

7 def setup(:

8 global adc

9 if (adc. detectI2C(0x48)): # Detect the pcf8591.
10 adc = PCF8591 ()

11 elif (adc. detectI2C(0x4b)): # Detect the ads7830
12 adc = ADS7830()

13 else:

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

print ("No correct 12C address found, \n”
“Please use command ’i2cdetect -y 1’ to check the 12C address! \n”

“Program Exit. \n”);

exit (1)
def loop():

while True:
value = adc. analogRead (0) # read ADC value AO pin
voltage = value / 255.0 % 3.3 # calculate voltage
Rt = 10 * voltage / (3.3 - voltage) # calculate resistance value of thermistor
tempK = 1/(1/(273.15 + 25) + math. log(Rt/10)/3950.0) # calculate temperature (Kelvin)
tempC = tempK —273. 15 # calculate temperature (Celsius)

print (ADC Value : %d, Voltage : % 2f, Temperature : % 2f %(value, voltage, tempC))
time. sleep (0. 01)

def destroy():

adc. close()

if name == main ’: # Program entrance
print (' Program is starting ... ")
setup ()
try:
Loop)
except KeyboardInterrupt: # Press ctrl-c to end the program.
destroy ()

print ("Ending program”)

In the code, the ADC value of ADC module AO port is read, and then calculates the voltage and the resistance
of Thermistor according to Ohms Law. Finally, it calculates the temperature sensed by the Thermistor,
according to the formula.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com KK

Chapter 12 Joystick

In an earlier chapter, we learned how to use Rotary Potentiometer. We will now learn about joysticks, which
are electronic modules that work on the same principle as the Rotary Potentiometer.

Project 12.1 Joystick

In this project, we will read the output data of a joystick and display it to the Terminal screen.

Component List

Raspberry Pi x1 Jumper x18

GPIO Extension Board & Ribbon Cable x1

Breadboard x1
Joystick x1 ADC module x1 Resistor
10kQ x3

-~ ADC

A0 agsam VOO

CIAT Wsor
- . OEE =

A2

PCF8591

FREENOVE
A7 Freenove GND

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Component knowledge

Joystick

A Joystick is a kind of input sensor used with your fingers. You should be familiar with this concept already as
they are widely used in gamepads and remote controls. It can receive input on two axes (Y and or X) at the
same time (usually used to control direction on a two dimensional plane). And it also has a third direction
capability by pressing down (Z axis/direction).

GND
+5V
VRX
VRY
SW

Joystick

o | oo o |-

This is accomplished by incorporating two rotary potentiometers inside the Joystick Module at 90 degrees of
each other, placed in such a manner as to detect shifts in direction in two directions simultaneously and with
a Push Button Switch in the “vertical” axis, which can detect when a User presses on the Joystick.

*5V NS
When the Joystick data is read, there are some differences between the axes: data of X and Y axes is analog,

which needs to use the ADC. The data of the Z axis is digital, so you can directly use the GPIO to read this
data or you have the option to use the ADC to read this.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

117

B www.freenove.com DX support@freenove.com

Circuit with ADS7830

Schematic diagram

3.3V 3_%_
R2
10kQ |
Joystick 3.3V 5V
SW GPIO18 SDA1 TXDO‘—S—
VRY | TR~ vcc/_a_SCL'l RXDO 9
VRX | —————{ a1 soA —L1GPI04 GPI018}-12—— cpio1d
vecfp——{s —{w sl ~111GPI017 GPI023 {16
GND |1 o L 131GPI027 GPI024 {18
@ pol—e ~12.1GPI1022 GP1025 .22
—t A5 COMp—= —19—»MOS| CEO‘-ZQ—
L 21IMiIso CE1}25-
o 231scLk SCLO 8
271spao GPI012}32—
29 1GPI05 GPIO16}36
. S1iGpios GPI1020}38
e -331GPI013 GP1021 40
= _%‘GPIOW
(GPI1026 Raspberry Pi
GPIO Extension Shield
GND

GPIO21e 2000

Pttt

Raspberry Pi GPIO Extension Shield

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com

www.freenove.com [l

Circuit with PCF8591

Schematic diagram

3.3V
R4
10kQ
Joystick
SW 5 GPIO18
IN VDD
VRY 4 o 0PCF8591
VRX 3 = 1 Aout;
VCC | @ w—t AIN2 Vref
GND T == AIN3 Agnd
4 AO EXT]
f A1 0s
Freenove
y A2 SCL
® Vss SDA™
?]

3.3V

R2 |
10kQ 3.3V 5V

3 1sDA1 TXDO }—8—

2.1SCL1 RXDO }-10.
—L1GPI04 GPI1018 12— Gpiorg
~111GPIO17 GP1023 |16
A31GPI027 GP1024 |18
A51GPI022 GPI025 |22
19 IMOS| CEO 24
211IMIsO CE1}26
-23.1sCLK scLo 28~
2L1SDAO GPIO12}32
29 1GPIO5 GPIO16 }-35—
-311GPIO6 GPI020 |38
-331GPIO13 GPI021 }40.
-321GPIO19
~31GPI026 Raspberry Pi

GPIO Extension Shield
GND

Raspberry Pi GPIO Extension Shield

Pt bt bt

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

165840d O K3

e o o o)

® 0 0 9 0 00 0 0 0 0 0 0 0 0 00
® ® 0 0 9 0 " "SSP S S SO O OD
® 0 0 0 0 0 0 0 0 e 0SS S S O
L L I R B R R R R R R R R B
® © 0 9 0 00 0 0 0 00 0 0 0 00
LR B L I B B L B .
LR ® o 0 0 0 e o 0 . .

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

In this project’s code, we will read the ADC values of X and Y axes of the Joystick, and read digital quality of
the Z axis, then display these out in Terminal.

If you did not configure 12C, please refer to Chapter 7. If you did, please continue.

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 12.1.1_Joystick directory of Python code.

cd ~/Freenove_Kit/Code/Python_GPIOZero_Code/12.1.1_Joystick

2. Use Python command to execute Python code "Joystick.py".

python Joystick.py

After the program is executed, the Terminal window will display the data of 3 axes X, Y and Z. Shifting (moving)
the joystick or pressing it down will make the data change.

)= e

1
1
1
1 Q
1
1
1
1

|l ¥

The following is the program code:

1 from gpiozero import Button

2 import time

3 from ADCDevice import *

4

5 7 Pin = 18 # define Z Pin

6 button = Button(Z Pin) # define Button pin according to BCM Numbering
7 adc = ADCDevice() # Define an ADCDevice class object

8

9 def setup(:

10 global adc

11 if (adc. detectI2C(0x48)) : # Detect the pcf8591.

12 adc = PCF8591 ()

13 elif (adc. detectI2C(0x4b)): # Detect the ads7830

14 adc = ADS7830()

15 else:

16 print ("No correct 12C address found, \n”

17 "Please use command ~i2cdetect —y 1’ to check the I12C address! \n”
18 “Program Exit. \n”);

19 exit(=1)

20

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

def loop():
while True:
val 7Z = not button. value # read digital value of axis Z
val Y = adc. analogRead (0) # read analog value of axis X and Y

val X = adc. analogRead (1)
print (value X: %d , \tvlue Y: %d ,\tvalue Z: %d %(val X,val Y,val Z))
time. sleep (0. 01)

def destroy():
adc. close()

button. close()

if name == main
print (Program is starting ... ') # Program entrance
setup ()
try:
loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.
destroy ()

print ("Ending program”)

In the code, configure Z_Pin as pull-up input mode. In the while loop, use analogRead() to read the values of
the axes X and Y and use the variable val_Z to save the value of the button.value variable for the Z axis, and
then display them. When the button is pressed, the value of the variable button.value is 1, otherwise the value

is 0.
def loop():
while True:
val 7 = not button. value # read digital value of axis Z
val Y = adc. analogRead (0) # read analog value of axis X and Y
val X = adc. analogRead (1)
print (value X: %d , \tvliue V: %d ,\tvalue Z: %d %(val X,val Y,val 7))
time. sleep (0. 01)

For more information about the methods used by the Button class in the GPIO Zero library,please refer to:
https://gpiozero.readthedocs.io/en/stable/api_input.ntml#button

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

. www.freenove.com

D4 support@freenove.com [VA

Chapter 13 Motor & Driver

In this chapter, we will learn about DC Motors and DC Motor Drivers and how to control the speed and

direction of a DC Motor.

Project 13.1 Control a DC Motor with a Potentiometer

In this project, a potentiometer will be used to control a DC Motor. When the Potentiometer is at the midpoint
position, the DC Motor will STOP, and when the Potentiometer is turned in either direction of this midpoint,
the DC Motor speed increases until it reached the endpoint where the DC Motor achieves its maximum speed.
When the Potentiometer is turned “Left” of the midpoint the DC Motor will ROTATE in one direction and when
turned “Right” the DC Motor will ROTATE in the opposite direction.

Component List

Raspberry Pi (with 40 GPIO) x1

Breadboard x1

GPIO Extension Board & Ribbon Cable x1

Jumper Wires x23
—-- -

Breadboard Power Module x1

5V OFF 3.3V

+ -

9V Battery (you provide) & 9V Battery Cable

Rotary DC Motor x1
Potentiometer x1 1

10kQ x2

ADC Module x1

PCF8591

FREENOVE

A7 gFraannve éND

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Component knowledge

Breadboard Power Module

Breadboard Power Module is an independent circuit board, which can provide independent 5V or 3.3V power
to the breadboard when building circuits. It also has built-in power protection to avoid damaging your RPi
module. The schematic diagram below identifies the important features of this Power Module:

Power LED

Power Switch

[Power Jack USB Output Port }

[Output voltage selection Output voltage selection }

- .
L OFF3.3V 5V OFF 3.2
_ INE EEE O000

[Output port for power + - E Output port for power }

Here is an acceptable connection between Breadboard Power Module and Breadboard using a 9V battery
and the provided power harness:

5V OFF 3.3V
00CO

HE
OUNEE NEN

[=]
zZ

2

A

m
e e o o o
e e 0o o o
e e o 0 0
e e 0o o o
e e o o o
e e e o o
e e 0 o o
e e o 0 o
e e 0 0o o
e e o o o
e e o o 0

5V OFF 3.3V
Co00
oo

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com < support@freenove.com [EMPE

DC Motor

DC Motor is a device that converts electrical energy into mechanical energy. DC Motors consist of two major
parts, a Stator and the Rotor. The stationary part of a DC Motor is the Stator and the part that Rotates is the
Rotor. The Stator is usually part of the outer case of motor (if it is simply a pair of permanent magnets), and
it has terminals to connect to the power if it is made up of electromagnet coils. Most Hobby DC Motors only
use Permanent Magnets for the Stator Field. The Rotor is usually the shaft of motor with 3 or more
electromagnets connected to a commutator where the brushes (via the terminals 1 & 2 below) supply
electrical power, which can drive other mechanical devices. The diagram below shows a small DC Motor with

two terminal pins.

|
1
2
———
1T 2

When a DC Motor is connected to a power supply, it will rotate in one direction. If you reverse the polarity of
the power supply, the DC Motor will rotate in opposite direction. This is important to note.

a 8 |
+ - -+

L293D

L293D is an IC Chip (Integrated Circuit Chip) with a 4-channel motor drive. You can drive a Unidirectional DC
Motor with 4 ports or a Bi-Directional DC Motor with 2 ports or a Stepper Motor (Stepper Motors are covered
later in this Tutorial).

1 . Enable 1 +V 16
2 21101 ina >
3 31 out 1 out 4 P4
4 41 ov ov P3
5 21 ov ov P2
6 L1 out2 out3 PL
7 Z1n2 In3 P2
8 =1 +Vmotor Enable 2 EN
293D

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Port description of L293D module is as follows:

Pin name Pin number Description

In x 2,7,10, 15 Channel x digital signal input pin

Out x 3,6,11, 14 Channel x output pin, input high or low level according to In x pin, gets
connected to +Vmotor or OV

Enablel 1 Channel 1 and Channel 2 enable pin, high level enable

Enable2 9 Channel 3 and Channel 4 enable pin, high level enable

oV 4,5,12,13 Power Cathode (GND)

+V 16 Positive Electrode (VCC) of power supply, supply voltage 4.5~36V

+Vmotor 8 Positive Electrode of load power supply, provide power supply for the Out

pin x, the supply voltage is +V~36V

For more details, please see the datasheet for this IC Chip.

When using the L293D to drive a DC Motor, there are usually two connection options.

The following connection option uses one channel of the L239D, which can control motor speed through
the PWM, However the motor then can only rotate in one direction.

L293D Pin Out)—

Motor CM)

The following connection uses two channels of the L239D: one channel outputs the PWM wave, and the other
channel connects to GND. Therefore, you can control the speed of the motor. When these two channel signals
are exchanged, not only controls the speed of motor, but also can control the direction of the motor.

L293D Pin Out1 L293D Pin Out1

GND

GND [L293D Pin Out 2

[L293D Pin Out 2

In practical use the motor is usually connected to channel 1 and by outputting different levels to in1 and in2
to control the rotational direction of the motor, and output to the PWM wave to Enablel port to control the
motor’s rotational speed. If the motor is connected to channel 3 and 4 by outputting different levels to in3
and in4 to control the motor's rotation direction, and output to the PWM wave to Enable2 pin to control the
motor’s rotational speed.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

125

B www.freenove.com DX support@freenove.com

Circuit with ADS7830

Use caution when connecting this circuit because the DC Motor is a high-power component. Do not use the
power provided by the RPi to power the motor directly, as this may cause permanent damage to your
RPi! The logic circuit can be powered by the RPi's power or an external power supply, which should share a

common ground with RPI.

Schematic diagram
3.3V 3.3V
=
3.3V 5V
A 9 o 3 1SDA1 TXDO }—8—
—1 -~ 2.1SCL1 RXDO 10
- . i - —L1GPI04 GPIO18 12~
L™ I 1 lGpPio17 GPI1023 |16
s coml— _]g GPIO27 GPI1024 18
— B — GPI022 GPI025 |22
L e (T T LI 19 Imos| CE0l24—
L293D 21IMISO CE1}26-
~g| Enable 2 +Vmotor [g -z'a-ggkl'é GPSI8|1-2 e
== In3 In2 -ZL‘ -3L
1% out3 out 2 |2 1 -291GPIO5 GPI016 }-36—
ol ov oV [-311GPI06 GPI020}-38~
-5 ov ov 5] -231GPIO13 GPI021 {40
13| outa out1}5 3 ~224GPIO19
- 75| In4 In113 -3L1GPI026 Raspberry Pi
16| *V Enable 13 GPIO Extension Shield
1 GND
5V
- |
3 3 i — —
) 3 —
SV% —-33v
GND T T GND
__—_ BreadBoardPower

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com

www.freenove.com .

Raspberry Pi GPIO Extensi

R

i |

]

[—

L R L R R R R R R R RRY]

Shield

-

A

F/M Jumper Wire x2

o
€0 mxn mnE o O0%
A7e 40 AS = 3
- .

Select OFF

Press power switch when using.

00CO

AEE 0 AS

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

Change the Jumper

(3.3V or 5V)

Position to Change the
Motor’s Supply Voltage

~

/

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

127

B www.freenove.com DX support@freenove.com

Circuit with PCF8591

Use caution when connecting this circuit because the DC Motor is a high-power component. Do not use the
power provided by the RPi to power the motor directly, as this may cause permanent damage to your
RPi! The logic circuit can be powered by the RPi’'s power or an external power supply, which should share a
common ground with RPI.

Schematic diagram
3.3V
TIAINO vdd}18
—2AINT poutfl2- | - | |
3 JAIN2 Vrefl—14 10kQ 10k0
4 | AIN3 AGND 13 3.3V 5V
5 1a0 EXTE—0—||| 3 IspA1 TXDO -8
6 {1 oscl- 51scL1 RXDO -0
7 a2 scLf-10 LIGPI04 GPIO18 12—
8 lyss spal-2 1 lGPIO17 GPI023 16
t PCrEeo 13 1GPI027 GPIO24 18
—— ,, 12 1Gp1022 GPI025 }-22—
- 2l 19 Imos| CEOQ 24—
L293D 21Imiso CE1}26_
~g| Enable 2 +Vmotor |g -ZiZZ gghlé GPSISI‘I_g -2-8—32
T ut out2 | 1 291GPIO5 GPIO16(-36
ol ov ov [-311GPIO6 GPIO20}38
-5 ov ov [+ -331GPIO13 GPI021 40—
L T4 outa out1fs 2 | | -354GPIO19
T 75| In4 In115 -3LGPI026 Raspberry Pi
T Enable 1|7 GPIO Extension Shield
1 GND
5V 3.3V
L —— l
3 i i —
, 1 —
SV% —-33v
GND T T GND
= BreadBoardPower

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

Raspberry Pi GPIO Extension Shield

ce e
se e

c e e e
ce e e

eo oo
eseee sesee

EEEA B LT

~

Change the Jumper
Position to Change the
Motor's Supply Voltage
(3.3V or 5V)

CCI0 mmr mmEg 00CD
A2 440 AS 2 AE'E 440 AS

S
E .

F/M Jumper Wire x2

The Power Switch

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

In code for this project, first read the ADC value and then control the rotation direction and speed of the DC
Motor according to the value of the ADC.

If you did not configure 12C and install Smbus, please refer to Chapter 7. If you did, please Continue.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via:

1. Use cd command to enter 13.1.1_Motor directory of Python code.

cd ~/Freenove_Kit/Code/Python_GPIOZero_Code/13.1.1_Motor
2. Use python command to execute the Python code “Motor.py”.

python Motor.py

After the program is executed, you can use the Potentiometer to control the DC Motor. When the
Potentiometer is at the midpoint position, the DC Motor will STOP, and when the Potentiometer is turned in
either direction of this midpoint, the DC Motor speed increases until it reaches the endpoint where the DC
Motor achieves its maximum speed. When the Potentiometer is turned “Left” of the midpoint the DC Motor
will ROTATE in one direction and when turned “Right” the DC Motor will ROTATE in the opposite direction.
You will also see the ADC value of the potentiometer displayed in the Terminal with the motor direction and
the PWM duty cycle used to control the DC Motor’s speed.

The following is the code:

1 from gpiozero import DigitalOutputDevice, PWMOutputDevice

2 import time

3 from ADCDevice import *

4

5 # define the pins connected to L293D

§) motoRPinl = DigitalOutputDevice (27) # define L293D pin according to BCM Numbering
7 motoRPin2 = DigitalOutputDevice (17) # define L293D pin according to BCM Numbering
3 enablePin = PWMOutputDevice (22, frequency=1000)

9 adc = ADCDevice() # Define an ADCDevice class object

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

def setup(:
global adc
if (adc. detectI2C(0x48)) : # Detect the pcf8591.
adc = PCF8591()
elif (adc. detectI2C(0x4b)): # Detect the ads7830
ade = ADS7830 ()
else:
print ("No correct 12C address found, \n”
“"Please use command ’i2cdetect -y 1’ to check the 12C address! \n”
"Program Exit. \n”);
exit(-1)
mapNUM function: map the value from a range of mapping to another range
def mapNUM (value, fromLow, fromHigh, toLow, toHigh) :
return (toHigh—toLow)*(value—fromLow) / (fromHigh—fromLow) + toLow

motor function: determine the direction and speed of the motor according to the input ADC
value input
def motor (ADC) :
value = ADC —128
if (value > 0): # make motor turn forward
motoRPinl. on() # motoRPinl output HIHG level
motoRPin2. of f () # motoRPin2 output LOW level
print (Turn Forward...’)
elif (value < 0): # make motor turn backward
motoRPinl. off ()
motoRPin2. on ()
print (Turn Backward...’)
else :
motoRPinl. off ()
motoRPin2. off ()
print (Motor Stop...)
b=mapNUM (abs (value), 0, 128, 0, 100)
enablePin. value = b / 100.0 # set dc value as the duty cycle
print (The PWM duty cvcle is %d%%\n %(abs(value)*100/127)) # print PMW duty cycle

def loop():
while True:
value = adc. analogRead(0) # read ADC value of channel 0
print (ADC Value : %d %(value))
motor (value)

time. sleep (0. 2)

def destroy():

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com >4 support@freenove.com [k

motoRPinl. close ()
motoRPin2. close ()
enablePin. close ()

adc. close()

if name == main ’: # Program entrance
print (' Program is starting ... ')
setup ()
try:
Loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

print ("Ending program”)

Now that we have familiarity with reading ADC values, let’s learn the subfunction void motor (int ADC): first,
compare the ADC value with 128 (value corresponding to midpoint). When the current ADC value is higher,
motoRPin1 outputs high level and motoRPin2 outputs low level to control the DC Motor to run in the “Forward”
Rotational Direction. When the current ADC value is lower, motoRPinl outputs low level and motoRPin2

outputs high level to control the DC Motor to run in the “Reverse” Rotational Direction. When the ADC value

is equal to 128, motoRPinl and motoRPin2 output low level, the motor STOPS. Then determine the PWM

duty cycle according to the difference (delta) between ADC value and 128. Because the absolute delta value

stays within 0-128. We need to use the map() subfunction mapping the delta value to a range of 0-255.
Finally, we see a display of the duty cycle in Terminal.

def motor (ADC) :
value = ADC —-128

if (value > 0): # make motor turn forward

motoRPinl. on() # motoRPinl output HIHG level
motoRPin2. of f () # motoRPin2 output LOW level
print (Turn Forward...’)

elif (value < 0): # make motor turn backward
motoRPinl. off ()
motoRPin2. on ()
print (Turn Backward...’)
else :
motoRPinl. off ()
motoRPin2. off ()
print (Motor Stop...)
b=mapNUM (abs (value), 0, 128, 0, 100)
enablePin. value = b / 100.0 # set dc value as the duty cycle
print (The PWM duty cvcle is %d%%\n %(abs(value)*100/127)) # print PMW duty cycle

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Chapter 14 Relay & Motor

In this chapter, we will learn a kind of special switch module, Relay Module.

Project 14.1.1 Relay & Motor

In this project, we will use a Push Button Switch indirectly to control the DC Motor via a Relay.

Component List

Raspberry Pi (with 40 GPIO) x1 Jumper Wire x11
GPIO Expansion Board & Ribbon Cable x1
Breadboard x1

—aa.s-- -

9V battery (prepared by yourself) & battery line

Breadboard Power module x1 Resistor 10kQ x2 | Resistor 1kQ x1 | Resistor 220Q x1

5V OFF 3.3V
0000

+ -

NPN Relay x1 Motor x1 Push button x1 Diode x1

transistor x1 J-

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com

Component knowledge

Relay

Relays are a type of Switch that open and close circuits electromechanically or electronically. Relays control
one electrical circuit by opening and closing contacts in another circuit using an electromagnet to initiate the
Switch action. When the electromagnet is energized (powered), it will attract internal contacts completing a
circuit, which act as a Switch. Many times Relays are used to allow a low powered circuit (and a small low
amperage switch) to safely turn ON a larger more powerful circuit. They are commonly found in automobiles,
especially from the ignition to the starter motor.

The following is a basic diagram of a common Relay and the image and circuit symbol diagram of the 5V
relay used in this project:

Diagram Feature: Symbol
/Armature Contactor
Spring ' =V
N L 24 6 1
&% o 3 P
2| » e M2
L ,r/ 1 3A 24VDC - 6
Electromagnet [4 T 2
Signal power 1 3 5
Load power
o

Pin 5 and pin 6 are internally connected to each other. When the coil pin3 and pin 4 are connected to a 5V
power supply, pin 1 will be disconnected from pins 5 & 6 and pin 2 will be connected to pins 5 & 6. Pin 1 is
called Closed End and pin 2 is called the Open End.

Inductor

The symbol of Inductance is “L” and the unit of inductance is the “Henry” (H). Here is an example of how this
can be encountered: 1H=1000mH, 1mH=1000uH.

An Inductor is a passive device that stores energy in its Magnetic Field and returns energy to the circuit
whenever required. An Inductor is formed by a Cylindrical Core with many Turns of conducting wire (usually
copper wire). Inductors will hinder the changing current passing through it. When the current passing through
the Inductor increases, it will attempt to hinder the increasing movement of current; and when the current
passing through the inductor decreases, it will attempt to hinder the decreasing movement of current. So the
current passing through an Inductor is not transient.

1N 2 1~~~V y\2

The circuit for a Relay is as follows: The coil of Relay can be equivalent to an Inductor, when a Transistor is
present in this coil circuit it can disconnect the power to the relay, the current in the Relay’s coil does not stop
immediately, which affects the power supply adversely. To remedy this, diodes in parallel are placed on both
ends of the Relay coil pins in opposite polar direction. Having the current pass through the diodes will avoid
any adverse effect on the power supply.

support@freenove.com Il

133

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com

www.freenove.com [l

{/SZLED1
o3 1
L o s
%52100 ZS \‘[
D1 6
! T2
R2 Rel
1kQ ey
Pin Q1

Circuit

Use caution with the power supply voltage needed for the components in this circuit. The Relay requires a
power supply voltage of 5V, and the DC Motor only requires 3.3V. Additionally, there is an LED present, which

acts as an indicator (ON or OFF) for the status of the Relay’s active status.

Schematic diagram
5\"_
3 -
I N
I's
o Z 1
2 1 4 .
R4 IN4001 3.3V 5V
Relay e AN _31spad TXDO -8~
: —21scL1 RXDO |10
—LIGPIO4 GPIO18!
o :I AW ———1 GPI017 GPI023 |16
é) 3 131GpPi027 GPI0O24 |18
M 1kQ 15 1GPI022 GPI025 22
1 19 Imosi CE0}24.
— 211IMISO CE1 26
- 231SCLK SCLO 28—
2L1SDA0 GPIO12}32-
. I 291GPI05 GPIO16 |36
S1iGPios GP1020 }-38
J_ 331GPI013 GPIO21 40
-321GPI019
sv— —_33v ~3L1GPIO26 Raspberry Pi
- - GPIO Extension Shield
GND T T GND GND
BreadBoardPower

R1
10kQ

R2
10kQ

_I\—|Sl

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com K

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

Raspberry Pi GPIO Extension Shield

LR

.
.
.
.
.

sMISO GPIO25e
#SCK CEO
#GND CE1
#SDA0 SC
#GPIO5 GN
#GPIO6 GPIO
#GPIO13 GN
#GPIO19 GPIO
#GPI026 GPIO20:
#GND GPIO21s 03
. .
.

e 0000

® e 9 ¢ ¢ v NN ¢ ¢ ¢ ¢ e e e @

e e e e
e e e 0.

e e 0w
e e e

R
EEEE

R

KRR

e
:
lo'

o000
e oo e

ee e e
e e 00
e e 0 00
® e 9 0 0 0 0
e e 0 00

Press replay

for connection.

..

LR

B
— |

oCO0
AEE 40 AS

T

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Code

The project code is in the same as we used earlier in the Table Lamp project. Pressing the Push Button Switch
activates the transistor. Because the Relay and the LED are connected in parallel, they will be powered ON at
the same time. Press the Push Button Switch again will turn them both OFF.

Python Code 14.1.1 Relay

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 14.1.1_Relay directory of Python code.

cd ~/Freenove_Kit/Code/Python_GPI0Zero_Code/14.1.1_Relay

2. Use Python command to execute code "Relay.py"”.

python Relay.py

After the program is executed, pressing the Push Button Switch activates the Relay (the internal switch is
closed), which powers the DC Motor to rotate and simultaneously powers the LED to turn ON. If you press
the Push Button Switch again, the Relay is deactivated (the internal switch opens), the Motor STOPS and the
LED turns OFF.

The following is the program code:

from gpiozero import DigitalOutputDevice, Button

import time

relayPin = 17 # define the relayPin

buttonPin = 18 # define the buttonPin

relay = DigitalOutputDevice (relayPin) # define LED pin according to BCM Numbering
button = Button(buttonPin) # define Button pin according to BCM Numbering

def onButtonPressed(): # When button is pressed, this function will be executed
relay. toggle ()
if relay.value :
print ("Turn on relay ...”)
else :

print ("Turn off relay ... ”)

def loop():
button. when pressed = onButtonPressed
while True:

time. sleep (1)
def destroy():
relay. close ()

button. close ()

if name == main # Program entrance

print (Program is starting...’)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com D4 support@freenove.com EIY

try:
Loop ()
except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

print ("Ending program”)

The project code is in the same as we used earlier in the Table Lamp project.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Chapter 15 Servo

Previously, we learned how to control the speed and rotational direction of a DC Motor. In this chapter, we
will learn about Servos which are a rotary actuator type motor that can be controlled rotate to specific angles.

Project 15.1 Servo Sweep

First, we need to learn how to make a Servo rotate.

Component List

Raspberry Pi (with 40 GPIO) x1 Jumper Wire x3
GPIO Expansion Board & Ribbon Cable x1

Breadboard x1

Servo x1

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com DX support@freenove.com

Component knowledge

Servo

Servo is a compact package which consists of a DC Motor, a set of reduction gears to provide torque, a sensor
and control circuit board. Most Servos only have a 180-degree range of motion via their *horn”. Servos can
output higher torque than a simple DC Motor alone and they are widely used to control motion in model cars,
model airplanes, robots, etc. Servos have three wire leads which usually terminate to a male or female 3-pin
plug. Two leads are for electric power: Positive (2-VCC, Red wire), Negative (3-GND, Brown wire), and the
signal line (1-Signal, Orange wire) as represented in the Servo provided in your Kit.

Q Signal
vCC
GND

Servo

=

We will use a 50Hz PWM signal with a duty cycle in a certain range to drive the Servo. The lasting time 0.5ms-
2.5ms of PWM single cycle high level corresponds to the Servo angle 0 degrees - 180 degree linearly. Part of
the corresponding values are as follows:

Note: the lasting time of high level corresponding to the servo angle is absolute instead of accumulating. For
example, the high level time lasting for 0.5ms correspond to the 0 degree of the servo. If the high level time
lasts for another 1ms, the servo rotates to 45 degrees.

High level time | Servo angle
0.5ms 0 degree
Ims 45 degree
1.5ms 90 degree
2ms 135 degree
2.5ms 180 degree

When you change the Servo signal value, the Servo will rotate to the designated angle.

support@freenove.com Il

139

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Circuit

Use caution when supplying power to the Servo it should be 5V. Make sure you do not make any errors when
connecting the Servo to the power supply.

Schematic diagram

3.3V 5V

—31SDA1 TXDO }=8—
—21SCL1 RXDO Q.
—L1GPI04 GPIO18}-12 s
1LlGPIo17 GPIO23H6~ 2
131GPI1027 GPIO24}18— 7 3
151GpI1022 GPI025}22—
19 Imos| CEO |24~
21dmiso CE1}26- .
231scLK SCLO 28~ =
2L1SDAO GPIO12}32~
291GPI05 GPIO16 |38~
311GPios GPI020}38
-331GPIO13 GP1021 40
-3-3-5.L-GPIO19

GPI026 Raspberry Pi

GPIO Extension Shield

GND

y

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

: T e o * o o . . o . . . LN . . e o 0
= ©
- £
: (g L I I I T B B R I R R D R R I D B R I B
: .9 ® ® 0 9 9 9 0 P O PP PP PO S P NG N
- ‘g D I I I S I T I I I B A
: 2 ® ® 9 9 9 0 0 9 O P S PO PP OSSP ST N
: m L I B R I R B R L R R B B B B R B
& o
: % MMMMM ® ® 9 9 9 0 O 0 O P S PO PSSO SE SO
i - I I I I I I I I I I I B B
: o ® 9 0 9 9 9 O 0 O P PP O PPN ST O
: E‘ ® ® 9 9 9 9 9 O P S P OSSNSO
- g D I I I I I I S O S O
i o
- 1]
- ©
i

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com K

Code

In this project, we will make a Servo rotate from 0 degrees to 180 degrees and then reverse the direction to
make it rotate from 180 degrees to 0 degrees and repeat these actions in an endless loop.

Python Code 15.1.1 Sweep

First observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 15.1.1_Sweep directory of Python code.

cd ~/Freenove_Kit/Code/Python_GPI0Zero_Code/15.1.1_Sweep

2. Use python command to execute code "Sweep.py".

python Sweep.py

After the program is executed, the Servo will rotate from O degrees to 180 degrees and then reverse the
direction to make it rotate from 180 degrees to 0 degrees and repeat these actions in an endless loop.

The following is the program code:

from gpiozero import AngularServo

import time

myGPI0=18

SERVO_DELAY_SEC = 0. 001

myCorrection=0. 0

maxPW= (2. 5+myCorrection) /1000

minPW=(0. 5-myCorrection) /1000

servo = AngularServo (myGPIO, initial angle=0, min_angle=0,

max_angle=180, min_pulse width=minPW, max_pulse width=maxPW)

def loop():
while True:

for angle in range(0, 181, 1): # make servo rotate from 0 to 180 deg
servo. angle = angle
time. sleep (SERVO DELAY SEC)

time. sleep(0. 5)

for angle in range (180, —1, —1): # make servo rotate from 180 to 0 deg
servo. angle = angle
time. sleep (SERVO DELAY SEC)

time. sleep(0. 5)

if name == main # Program entrance
print (Program is starting...’)
try:
Loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

print ("Ending program”)

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Import the AngularServo class that controls Servo from the gpiozero library.

- from gpiozero import AngularServo ‘
A 50 Hz pulse for a 20ms cycle is required to control the Servo. By default, the AngularServo class has set the
control period to 20 milliseconds.

. servo = AngularServo (myGPIO, initial angle=0, min_angle=0,

max_angle=180, min_pulse width=minPW, max pulse width=maxPW)

The 0-180 degree rotation of the servo corresponds to a PWM pulse width of 0.5-2.5ms at a period of 20ms
and a duty cycle of 2.5%-12.5%. After setting the AngularServo class and passing in the corresponding angle
parameters, the servo will turn to the corresponding position. However, in actual operation, as there is a
deviation in the width of the servo pulse, we need to define minimum and maximum pulse width and error
offset (this is essential in robotics).

myCorrection=0. 0 #define pulse offset of servo

maxPW= (2. 5+myCorrection) /1000 fidefine pulse duty cycle for minimum angle of servo
minPW=(0. 5-myCorrection) /1000 fidefine pulse duty cycle for maximum angle of s
servo = AngularServo (myGPIO, initial angle=0, min_angle=0,

max_angle=180, min_pulse width=minPW, max _pulse width=maxPW)
OFFSE DUTY = 0.5 #tdefine pulse offset of servo

SERVO_MIN_DUTY
SERVO_MAX DUTY

2. 5+OFFSE_DUTY fidefine pulse duty cycle for minimum angle of servo

12. 5+OFFSE_DUTY fidefine pulse duty cycle for maximum angle of s ervo

for angle in range(0, 181, 1): # make servo rotate from 0 to 180 deg
servo. angle = angle
time. sleep (SERVO DELAY SEC)

time. sleep(0. 5)

Finally, in the "while" cycle of main function, we need to use two separate cycles to make servo rotate from O
degrees to 180 degrees and then from 180 degrees to 0 degrees.
def loop():

while True:

for angle in range(0, 181, 1): # make servo rotate from O to 180 deg
servo. angle = angle
time. sleep (SERVO DELAY SEC)

time. sleep(0. 5)

for angle in range (180, —1, —1): # make servo rotate from 180 to 0 deg
servo. angle = angle
time. sleep (SERVO DELAY SEC)

time. sleep(0. 5)

For more information about the methods used by the AngularServo class in the GPIO Zero library,please refer
to:https://gpiozero.readthedocs.io/en/stable/api_output.html#angularservo

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com (e

In the above experiment, you can see that the servo jitter obviously when working.

Note: To reduce servo jitter, use the pigpio pin driver rather than the default RPi.GPIO driver (pigpio uses
DMA sampling for much more precise edge timing).

You can refer to the code sweep2.py for more details.

1. Use cd command to enter 15.1.1_Sweep directory of Python code.

cd ~/Freenove_Kit/Code/Python_GPIOZero_Code/15.1.1_Sweep

2. Use python command to execute code "Sweep.py".

python Sweep2.py

After the program executes, the servo will rotate from 0 degrees to 180 degrees, then reverse the direction
so it rotates from 180 degrees to 0 degrees, and repeat these actions in an infinite loop. At this time, the
steering gear can hardly feel the vibration.
This code is based on pigpio. In the latest Raspberry Pi OS, “pigpio” library has been installed. You only need
to run the command to enable it.

sudo pigpiod

pifiraspberrypi

pifiraspberrypi

If the “pigpio” library has not yet been installed, please follow the steps to install it.
Run the command to install “pigpio” library.

sudo apt-get update

sudo apt-get install pigpio python-pigpio python3-pigpio

The following is the program code:

1 import os

2 os. system(”sudo pigpiod”)

3 from gpiozero import AngularServo

4 from gpiozero. pins.pigpio import PiGPIOFactory
5 import time

6

7 my factory = PiGPIOFactory ()

8 myGPT10=18

9 SERVO_DELAY_SEC = 0. 001

myCorrection=0. 0

10 maxPW= (2. 5+myCorrection) /1000

11 minPW= (0. 5-myCorrection) /1000

12 servo = AngularServo (myGPIO, initial angle=0, min angle=0,

13 max_angle=180, min pulse width=minPW, max pulse width=maxPW, pin factory=my factory)
14
15 def loop():

16 while True:

17 for angle in range(0, 181, 1): # make servo rotate from 0 to 180 deg
18 servo. angle = angle

19 time. sleep (SERVO DELAY SEC)

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com

www.freenove.com [l

20 time. sleep(0. 5)

21 for angle in range (180, —1, —1): # make servo rotate from 180 to 0 deg
22 servo. angle = angle

23 time. sleep (SERVO DELAY SEC)

24 time. sleep(0. 5)

25

26 if name == main # Program entrance

27 print (Program is starting...’)

28 try:

29 Loop ()

30 except KeyboardInterrupt: # Press ctrl-c to end the program.
31 servo. close ()

32 os. system(“sudo killall pigpiod”)

33 print ("Ending program”)

The following values, and the corresponding Factory and Pin classes are listed in the table below. Factories

are listed in the order that they are tried by default.

Name Factory class Pin class

rpigpio gpiozero.pins.rpigpio.RPiIGPIOFactory gpiozero.pins.rpigpio.RPiIGPIOPIN
lgpio gpiozero.pins.lgpio.LGPIOFactory gpiozero.pins.lgpio.LGPIOPIn
rpio gpiozero.pins.rpio.RPIOFactory gpiozero.pins.rpio.RPIOPIN
pigpio gpiozero.pins.pigpio.PiGPIOFactory gpiozero.pins.pigpio.PiGPIOPIN
native gpiozero.pins.native.NativeFactory gpiozero.pins.native.NativePin

See Changing the pin factory for further information:

https://gpiozero.readthedocs.io/en/stable/api_pins.html#changing-pin-factory

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://gpiozero.readthedocs.io/en/stable/api_pins.html#gpiozero.Factory
https://gpiozero.readthedocs.io/en/stable/api_pins.html#gpiozero.Pin
https://gpiozero.readthedocs.io/en/stable/api_pins.html#gpiozero.pins.rpigpio.RPiGPIOFactory
https://gpiozero.readthedocs.io/en/stable/api_pins.html#gpiozero.pins.rpigpio.RPiGPIOPin
https://gpiozero.readthedocs.io/en/stable/api_pins.html#gpiozero.pins.lgpio.LGPIOFactory
https://gpiozero.readthedocs.io/en/stable/api_pins.html#gpiozero.pins.lgpio.LGPIOPin
https://gpiozero.readthedocs.io/en/stable/api_pins.html#gpiozero.pins.rpio.RPIOFactory
https://gpiozero.readthedocs.io/en/stable/api_pins.html#gpiozero.pins.rpio.RPIOPin
https://gpiozero.readthedocs.io/en/stable/api_pins.html#gpiozero.pins.pigpio.PiGPIOFactory
https://gpiozero.readthedocs.io/en/stable/api_pins.html#gpiozero.pins.pigpio.PiGPIOPin
https://gpiozero.readthedocs.io/en/stable/api_pins.html#gpiozero.pins.native.NativeFactory
https://gpiozero.readthedocs.io/en/stable/api_pins.html#gpiozero.pins.native.NativePin

B www.freenove.com D4 support@freenove.com [RES

Chapter 16 Stepper Motor

Thus far, we have learned about DC Motors and Servos. A DC motor can rotate constantly in on direction but
we cannot control the rotation to a specific angle. On the contrary, a Servo can rotate to a specific angle but
cannot rotate constantly in one direction. In this chapter, we will learn about a Stepper Motor which is also a
type of motor. A Stepper Motor can rotate constantly and also to a specific angle. Using a Stepper Motor can
easily achieve higher accuracies in mechanical motion.

Project 16.1 Stepper Motor

In this project, we will learn how to drive a Stepper Motor, and understand its working principle.

Component List

Raspberry Pi (with 40 GPIO) x1 Jumper Wire x12
GPIO Expansion Board & Ribbon Cable x1
Breadboard x1

Stepper Motor x1 ULN2003 Stepper Motor Driver x1

— - - — ——

9V battery (prepared by yourself) & battery line

5V OFF 3.3V 5V OFF 3.3V
0000

+ +-

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Component knowledge

Stepper Motor

Stepper Motors are an open-loop control device, which converts an electronic pulse signal into angular
displacement or linear displacement. In a non-overload condition, the speed of the motor and the location
of the stops depends only on the pulse signal frequency and number of pulses and is not affected by changes
in load as with a DC Motor. A small Four-Phase Deceleration Stepper Motor is shown here:

Jon [Juo oo |
ONwm>

PWR
Stepper Motor

12345

The electronic schematic diagram of a Four-Phase Stepper Motor is shown below:

A
B

COM

The outside case or housing of the Stepper Motor is the Stator and inside the Stator is the Rotor. There is a
specific number of individual coils, usually an integer multiple of the number of phases the motor has, when
the Stator is powered ON, an electromagnetic field will be formed to attract a corresponding convex
diagonal groove or indentation in the Rotor’s surface. The Rotor is usually made of iron or a permanent
magnet. Therefore, the Stepper Motor can be driven by powering the coils on the Stator in an ordered
sequence (producing a series of “steps” or stepped movements).

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com

A common driving sequence is shown here:

B

COM

COM COM

In the sequence above, the Stepper Motor rotates by a certain angle at once, which is called a “step”. By
controlling the number of rotational steps, you can then control the Stepper Motor's rotation angle. By
defining the time between two steps, you can control the Stepper Motor’s rotation speed. When rotating
clockwise, the order of coil powered onis: A > B> C > D > A 2>~ . And the rotor will rotate in accordance
with this order, step by step, called four-steps, four-part. If the coils is powered ON in the reverse order, D 2>
C > B> A=>D -, therotor will rotate in counter-clockwise direction.

There are other methods to control Stepper Motors, such as: connect A phase, then connect A B phase, the
stator will be located in the center of A B, which is called a half-step. This method can improve the stability of
the Stepper Motor and reduces noise. Tise sequence of powering the coils looks like this: A > AB > B > BC
> C > CD > D > DA = A >~ the rotor will rotate in accordance to this sequence ar, a half-step at a
time, called four-steps, eight-part. Conversely, if the coils are powered ON in the reverse order the Stepper
Motor will rotate in the opposite direction.

The stator in the Stepper Motor we have supplied has 32 magnetic poles. Therefore, to complete one full
revolution requires 32 full steps. The rotor (or output shaft) of the Stepper Motor is connected to a speed
reduction set of gears and the reduction ratio is 1:64. Therefore, the final output shaft (exiting the Stepper
Motor’s housing) requires 32 X 64 = 2048 steps to make one full revolution.

support@freenove.com Il

147

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com

www.freenove.com [l

ULN2003 Stepper Motor

driver

A ULN2003 Stepper Motor Driver is used to convert weak signals into more powerful control signals in order

to drive the Stepper Motor. In the illustration below, the input signal IN1-IN4 corresponds to the output signal

A-D, and 4 LEDs are integrated into the board to indicate the state of these signals. The PWR interface can

be used as a power supply for the Stepper Motor. By default, PWR and VCC are connected.

Circuit

AL Nt A 18-
21 N2 B |2
31IN3 c o
Al 1Ng p [LL
21GND pwR 2
b1 vcc
L1 pwR

ULN2003 Stepper

Motor Driver

When building the circuit, note that rated voltage of the Stepper Motor is 5V, and we need to use the

breadboard power supply independently, (Caution do not use the RPi power supply). Additionally, the

breadboard power supply needs to share Ground with Rpi.

Schematic diagram

SDA1
SCLA1
GPIO4
GPIO1
GPIO2
GPIO2
MOSI
MISO
SCLK
SDAO
GPIO5
GPIO6
GPIO1
GPIO1
GPIO2

GPIO

REsRBNREGRR

Extension Shield

33V 5V
TXDO |8
RXDO {12
GPI018}-12 11N A I8 il
7 GPI023 116 2| N2 A D (5
7 GPI024 18 31 N3 c flo__3|¢
CEOf24— |||——2{GND pPwR ['2—31pwR
CE1[46 6] vee [_
SCLO‘-28—32 5 7] PWR tepper Motor
8;:81% [36 ULN2003 Stepper
GP|020‘ 38 Motor Driver
3 GPIO21 {40 T m
9 w re—
6 Raspberry Pi ‘l_ _L
33V

GND

v =

GND T T GND

BreadBoardPower

B support@freenove.c

om

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com RS

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

Raspberry Pi GPIO Extension Shield

#GPIO17 GPIO18e
#GPIO27 GNDe
#GPI022 GPIO23e
#3V3 GPI024e
#MOSI GNDe
#MISO GPIO25#

S

#GPIO6 GPIO12e
#GPIO13 GNDe
#GPIO19 GPIO16e
#GP1026 GPI020s)
#GND GPIO21e 3

+

AE'E 440 AS & AE'E 440 AS

® @ © 0o 0 0 ® 00 00 0 0 0 e 0 0 0 0 0 0 e 0 e e e
® © 0 0 00 0 0 00 0 0 00 0 e 0 0 0 0 0 0 e e e e
@ @ o ¢ 0 0 ® 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e

® © 0 o 0 0 ¢ 0 00 00 0 0 0 0 0 0 0 0 0 e e e e
® @ o 0o 9 e ¢ 00 0 0 0 0 0 0 00 0 0 0 0 0 0 e 0 e <

® © ® 9 0 0 ¢ 0 0 0 0 0 0 0 0 0 0 e 0 OO e e e
® © 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 e 00 e e e 0 e

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Code

Python Code 16.1.1 SteppingMotor

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 16.1.1_SteppingMotor directory of Python code.

2. Use Python command to execute code "SteppingMotor.py"”.

After the program is executed, the Stepper Motor will rotate 360° clockwise and then 360° anticlockwise and
repeat this action in an endless loop.
The following is the program code:

from gpiozero import OutputDevice

import time

motorPins = (18, 23, 24, 25) # define pins connected to four phase ABCD of stepper motor

motorPins = (”7J8:12”, ”J8:16”, ”J8:18”, ”J8:22”) # define pins connected to four phase ABCD
of stepper motor

motors = list(map(lambda pin: OutputDevice (pin), motorPins))

CCWStep = (0x01, 0x02, 0x04, 0x08) # define power supply order for rotating anticlockwise

CWStep = (0x08, 0x04, 0x02, 0x01) # define power supply order for rotating clockwise

as for four phase stepping motor, four steps is a cycle. the function is used to drive the
stepping motor clockwise or anticlockwise to take four steps

def moveOnePeriod(direction, ms) :

for j in range (0,4, 1): # cycle for power supply order
for i in range(0,4,1): # assign to each pin
if (direction == 1) :# power supply order clockwise
motors[i].on() if (CCWStep[j] == 1<<i) else motors[i].off ()
else : # power supply order anticlockwise
motors[i].on() if CWStep[j] == 1<<i else motors[i].off()
if (ms<3) : # the delay can not be less than 3ms, otherwise it will exceed speed

limit of the motor
ms = 3

time. sleep (ms*0. 001)

continuous rotation function, the parameter steps specifies the rotation cycles, every four
steps is a cycle
def moveSteps(direction, ms, steps):

for i in range(steps):

moveOnePeriod(direction, ms)

function used to stop motor

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

def motorStop():
for i in range(0, 4, 1):

motors. of f ()

def loop():
while True:
moveSteps (0, 3, 512) # rotating 360 deg clockwise, a total of 2048 steps in a circle
512 cycles
time. sleep(0. 5)
moveSteps(l, 3,512) # rotating 360 deg anticlockwise
time. sleep (0. 5)

if name == main # Program entrance
print (Program is starting...’)
try:
loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

print ("Ending program”)

In the code we define the four pins of the Stepper Motor and the order to supply power to the coils for a
four-step rotation mode.

motorPins = (18, 23, 24, 25) # define pins connected to four phase ABCD of stepper motor

motorPins = (”J8:12”7, ”7J8:167, ”J8:18”, ”J8:22”) # define pins connected to four phase ABCD
of stepper motor

motors = list(map (lambda pin: OutputDevice(pin), motorPins))

CCWStep = (0x01, 0x02, 0x04, 0x08) # define power supply order for rotating anticlockwise

CWStep = (0x08, 0x04, 0x02, 0x01) # define power supply order for rotating clockwise

Subfunction moveOnePeriod ((int dir, int ms) will drive the Stepper Motor rotating four-step clockwise or
anticlockwise, four-step as a cycle. Where parameter "dir" indicates the rotation direction, if "dir" is 1, the
servo will rotate clockwise, otherwise it rotates to anticlockwise. Parameter "ms" indicates the time between
each two steps. The "ms" of Stepper Motor used in this project is 3ms (the shortest time period), a value of
less than 3ms will exceed the limits of the Stepper Motor with a result that it does not rotate.

def moveOnePeriod(direction, ms) :

for j in range (0,4, 1): # cycle for power supply order
for i in range(0,4,1): # assign to each pin
if (direction = 1) :# power supply order clockwise
motors[i].on() if (CCWStep[j] == 1<<i) else motors[i].off ()
else : # power supply order anticlockwise

motors[i].on() if CWStep[j] == 1<<i else motors[i]. off()
if (ms<3) : # the delay can not be less than 3ms, otherwise it will exceed speed
limit of the motor
ms = 3

time. sleep (ms*0. 001)

Subfunction moveSteps (direction, ms, steps) is used to specify the cycle number of Stepper Motor.
- def moveSteps(direction, ms, steps): ‘

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

for i in range(steps):
moveOnePeriod (direction, ms)

Subfunction motorStop () is used to stop the Stepper Motor.

def motorStop():

for i in range(0, 4, 1):

motors. of f ()

Finally, in the while loop of main function, rotate one revolution clockwise, and then one revolution
anticlockwise. According to the previous material covered, the Stepper Motor one revolution requires 2048
steps, that is, 2048/4=512 cycle.

while True:

moveSteps (0, 3,512) # rotating 360 deg clockwise, a total of 2048 steps in a circle
512 cycles

time. sleep (0. 5)

moveSteps (1, 3,512) # rotating 360 deg anticlockwise

time. sleep (0. 5)

For more information about the methods used by the OutputDevice class in the GPIO Zero library,please refer
to: https://gpiozero.readthedocs.io/en/stable/api_output.html#outputdevice

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com ke

Chapter 17 74HC595 & Bar Graph LED

We have used LED Bar Graph to make a flowing water light, in which 10 GPIO ports of RPi are occupied. More
GPIO ports mean that more peripherals can be connected to RPi, so GPIO resource is very precious. Can we
make flowing water light with less GPIO ports? In this chapter, we will learn a component, 74HC595, which
can achieve the target.

Project 17.1 Flowing Water Light

Now let us learn how to use the 74HC595 IC Chip to make a flowing water light using less GPIO.

Component List

Raspberry Pi (with 40 GPIO) x1 Jumper x17
GPIO Extension Board & Ribbon Cable x1
Breadboard x1

T4HC595 x1 Bar Graph LED x1 Resistor 220Q x8

—-- -

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

154 support@freenove.com www.freenove.com [l

Component knowledge

74HC595

A 74HC595 chip is used to convert serial data into parallel data. A 74HC595 chip can convert the serial data
of one byte into 8 bits, and send its corresponding level to each of the 8 ports correspondingly. With this
characteristic, the 74HC595 chip can be used to expand the IO ports of a Raspberry Pi. At least 3 ports on the
RPI board are required to control the 8 ports of the 74HC595 chip.

1 16 - a vee 12
2 15 3 Q2 QO 7
3 14 1t DS |5
4 13 & Q4 OE 5
5 12 3 Q5 ST_CP T
6 11 = Q6 SH_CP 0
7 10 <197 MR |5~
8 9 =] GND Q7' =
74HC595
The ports of the 74HC595 chip are described as follows:

Pin name Pin number Description

Q0-Q7 15, 1-7 Parallel Data Output

VCC 16 The Positive Electrode of the Power Supply, the Voltage is 2~6V

GND 8 The Negative Electrode of Power Supply

DS 14 Serial Data Input

OE 13 Enable Output,

When this pin is in high level, Q0-Q7 is in high resistance state
When this pin is in low level, Q0-Q7 is in output mode

ST_CP 12 Parallel Update Output: when its electrical level is rising, it will update the
parallel data output.

SH_CP 11 Serial Shift Clock: when its electrical level is rising, serial data input register
will do a shift.

MR 10 Remove Shift Register: When this pin is in low level, the content in shift
register will be cleared.

Qr' 9 Serial Data Output: it can be connected to more 74HC595 chips in series.

For more details, please refer to the datasheet on the 74HC595 chip.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www .freenove.com

X support@freenove.com

Circuit

Schematic diagram

ﬁhbhkkabLLﬁkbk

3
3.3V 5V

SDA1 TXDO }=8—
SCL1 RXDO 10—
GPIO4 GPIO18}-12~
GPIO17 GPI023 |16
GPI027 GP1024 |18
GPI022 GPI1025 |22
MOSI CE0}24..
MISO CE1}28-
SCLK SCLO 28—
SDAO GPIO12}32
GPIO5 GPI016}-36—
GPIO6 GP1020}-38
GPIO13 GP1021 140
GPIO19
GPI026 Raspberry Pi

GPIO Extension Shield

GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

Pttt et

Raspberry Pi GPIO Extension Shield

4%321:2:::::::1:1:

o 0 00

L B B L B

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Code

In this project we will make a flowing water light with a 74HC595 chip to learn about its functions.

Python Code 17.1.1 LightWater02

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 17.1.1_LightWater02 directory of Python code.

cd ~/Freenove_Kit/Code/Python_GPI0Zero_Code/17.1.1_LightWater02

2. Use python command to execute Python code “LightWater02.py”.

python LightWater02.py

After the program is executed, you will see that Bar Graph LED starts with the flowing water pattern flashing
from left to right and then back from right to left.

The following is the program code:

from gpiozero import OutputDevice
import time

Defines the data bit that is transmitted preferentially in the shiftOut function.

LSBFIRST = 1

MSBFIRST = 2

define the pins for 74HC595

dataPin = OutputDevice (17) # DS Pin of 74HC595(Pinl4)
latchPin = OutputDevice (27) # ST CP Pin of 74HC595(Pin12)
clockPin = OutputDevice (22) # CH_CP Pin of 74HC595(Pinl1)

shiftOut function, use bit serial transmission.
def shiftOut (order, val):
for i in range(0,8):
clockPin. of f ()
if (order == LSBFIRST) :
dataPin.on() if (0x01&(val>>i)==0x01) else dataPin. off ()
elif(order == MSBFIRST) :
dataPin.on() if (0x80&(val<<i)==0x80) else dataPin. off()

clockPin. on()

def loop():
while True:
x=0x01
for i in range(0, 8):
latchPin. of f () # Output low level to latchPin
shiftOut (LSBFIRST, x) # Send serial data to 74HC595
latchPin. on() # Output high level to latchPin, and 74HC595 will update the data
to the parallel output port
x<<=1 # make the variable move one bit to left once, then the bright LED move one

step to the left once

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com D4 support@freenove.com I

time. sleep (0. 1)
x=0x80
for i in range(0, 8) :
latchPin. of ()
shiftOut (LSBFIRST, x)
latchPin. on()
x>=1
time. sleep (0. 1)

def destroy():
dataPin. close()
latchPin. close ()

clockPin. close()

if name == main ’: # Program entrance
print (Program is starting...’)
try:
loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

print ("Ending program”)

Import the OutputDevice class that controls the 74HC595 chip from the gpiozero library.

! from gpiozero import OutputDevice
Create the OutputDevice class for controlling the 74HC595 chip.

dataPin = OutputDevice (17) # DS Pin of 74HC595(Pinl4)
latchPin = OutputDevice (27) # ST CP Pin of 74HC595(Pinl2)
clockPin = OutputDevice (22) # CH CP Pin of 74HC595(Pinl11)

In the code, we define a shiftOut() function, which is used to output values with bits in order, where the dPin
for the data pin, cPin for the clock and order for the priority bit flag (high or low). This function conforms to
the operational modes of the 74HC595. LSBFIRST and MSBFIRST are two different flow directions.
shiftOut function, use bit serial transmission.
def shiftOut (order, val):
for i in range(0,8):
clockPin. off ()
if (order == LSBFIRST) :
dataPin.on() if (0x01&(val>>i)==0x01) else dataPin. off()
elif (order == MSBFIRST) :
dataPin.on() if (0x80&(val<<i)==0x80) else dataPin. off()

clockPin. on()

In the loop() function, we use two cycles to achieve the action goal. First, define a variable x=0x01, binary
00000001. When it is transferred to the output port of 74HC595, the low bit outputs high level, then an LED
turns ON. Next, x is shifted one bit, when x is transferred to the output port of 74HC595 once again, the LED

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

that turns ON will be shifted. Repeat the operation, over and over and the effect of a flowing water light will
be visible. If the direction of the shift operation for x is different, the flowing direction is different.
def loop():
while True:
x=0x01

for i in range(0,8) :
latchPin. of f () # Output low level to latchPin
shiftOut (LSBFIRST, x) # Send serial data to 74HC595
latchPin. on() # Output high level to latchPin, and 74HC595 will update the data
to the parallel output port
x<{<=1 # make the variable move one bit to left once, then the bright LED move one
step to the left once
time. sleep (0. 1)
x=0x80
for i in range (0, 8) :
latchPin. off ()
shiftOut (LSBFIRST, x)
latchPin. on()
>=1
time. sleep (0. 1)

For more information about the methods used by the OutputDevice class in the GPIO Zero library,please refer
to: https://gpiozero.readthedocs.io/en/stable/api_output.html#outputdevice

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com D4 support@freenove.com [JEEE]

Chapter 18 74HC595 & 7-Segment Display

In this chapter, we will introduce the 7-Segment Display.

Project 18.1 7-Segment Display

We will use a 74HC595 IC Chip to control a 7-Segment Display and make it display sixteen decimal characters
"0" to “F".

Component List

Raspberry Pi (with 40 GPIO) x1 Jumper Wire x18
GPIO Extension Board & Ribbon Cable x1
Breadboard x1

T4HC595 x1 7-Segment Display x1 Resistor 220Q x8

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Component knowledge

7-segment display

A 7-Segment Display is a digital electronic display device. There is a figure "8" and a decimal point represented,
which consists of 8 LEDs. The LEDs have a Common Anode and individual Cathodes. Its internal structure and
pin designation diagram is shown below:

10 @

0000
3,8
| @ ?
0 U \ 4 A 4
- T E| F| G|DP
D DP ooooo O o O

] 6 4 2 1 9 10 5

As we can see in the above circuit diagram, we can control the state of each LED separately. Also, by combining
LEDs with different states of ON and OFF, we can display different characters (Numbers and Letters). For
example, to display a “0": we need to turn ON LED segments A, B, C, D, E and F, and turn OFF LED segments
G and DP.

A
S

¥ e
)
E ,
A
D
In this project, we will use a 7-Segment Display with a Common Anode. Therefore, when there is an input low
level to an LED segment the LED will turn ON. Defining segment “A” as the lowest level and segment “DP” as

the highest level, from high to low would look like this: “DP”, “G”, “F", “E", “D", “C”, “B", "A". Character "0"
corresponds to the code: 1100 0000b=0xcO0.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com < support@freenove.com [EMEH

Circuit

Schematic diagram

£
w

3.3V 3.3V 5V
Q0 NWJ] —31SDA1 TXDO =8~
Q1 —— A Ha vee]g —21SCL1 RXDO }-10—
Q2 AMAA S Qo [—11LGP|04 GPIO18 g
s A Q3 DS GPIO17 GPI023
Qd ——AMN, = o4 OF [__131GP1027 GPI1024 |18
% ANW-— 21os stcp fE—"T" ~131GPIO22 GPI025 22—
Q6 A Slas sHcp pr—o[-12qMosI CEO0 24—
Q7 —— A a7 MR —§——|g 21IMiso CE1}-26—
o —>{ GND Q7 |- -231scLk SCLO}-28—
— L -2L4SDAO GPIO12}32—
- — 29GPI05 GPI016 {36~
= 31GpPIos GPI020 |38~
7 SEGMENT ﬁﬁ-gplms GPI021 40
-35.1GPI019
iGPIOZ‘S Raspberry Pi
GPIO Extension Shield
(> Col
DP —
COM s
COM @

-0

Raspberry Pi GPIO Extension Shield

Code

This code uses a 74HC595 IC Chip to control the 7-Segment Display. The use of the 74HC595 IC Chip is

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

generally the same throughout this Tutorial. We need code to display the characters “0” to “F” one character
at a time, and then output to display them with the 74HC595 IC Chip.

Python Code 18.1.1 SevenSegmentDisplay

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 18.1.1_SevenSegmentDisplay directory of Python code.

cd ~/Freenove_Kit/Code/Python_GPI0Zero_Code/18.1.1_SevenSegmentDisplay

2. Use Python command to execute Python code “SevenSegmentDisplay.py”.

python SevenSegmentDisplay.py

After the program is executed, the 7-Segment Display starts to display the characters “0” to “F” in succession.
The following is the program code:

from gpiozero import OutputDevice

import time

LSBFIRST = 1

MSBFIRST = 2

define the pins for 74HC595

dataPin = OutputDevice (17) # DS Pin of 74HC595(Pinl4)
latchPin = OutputDevice(27) # ST _CP Pin of 74HC595(Pinl12)
clockPin = OutputDevice (22) # CH CP Pin of 74HC595(Pinl1l)

SevenSegmentDisplay display the character “0”— “F” successively

num = [0xc0, 0xf9, Oxad, 0xb0, 0x99, 0x92, 0x82, 0x 8, 0x80, 0x90, 0x88, 0x83, 0xc6, Oxal, 0x86, 0x8e]

def shiftOut (order, val):
for i in range(0, 8):
clockPin. of ()
if (order == LSBFIRST) :
dataPin.on() if (0x01&(val>>i)==0x01) else dataPin. off ()
elif (order == MSBFIRST) :
dataPin.on() if (0x80&(val<<i)==0x80) else dataPin.off ()

clockPin. on()

def loop():
while True:

for i in range(0, len(num)) :
latchPin. of ()
shiftOut (MSBFIRST, num[i]) # Send serial data to 74HC595
latchPin. on()
time. sleep (0. 5)

for i in range(0, len(num)) :
latchPin. of ()
shiftOut (MSBFIRST, num[i]&0x7f) # Use “&0x7f” to display the decimal point
latchPin. on()
time. sleep (0. 5)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com 4 support@freenove.com

def destroy():
dataPin. close()
latchPin. close ()

clockPin. close ()

if name == main ’: # Program entrance
print (' Program is starting...’)
try:
Loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

print ("Ending program”)

First, we need to create encoding for characters “0” to “F” in the array.

! num = [0xc0, 0xf9, Oxa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90, 0x88, 0x83, 0xc6, Oxal, 0x86, 0x8e]

In the “for” loop of loop() function, use the 74HC595 IC Chip to output contents of array “num” successively.
SevenSegmentDisplay can then correctly display the corresponding characters. Pay attention to this in regard
to shiftOut function, the transmission bit, flag bit amd highest bit will be transmitted preferentially.

for i in range (0, len(num)) :
latchPin. of ()
shiftOut (MSBFIRST, num[i]) #Output the figures and the highest level is transfered
preferentially.
latchPin. on ()
time. sleep (0. 5)

If you want to display the decimal point, make the highest bit of each array “0", which can be implemented
easily by num[i]&0x7f.
] shiftOut (MSBFIRST, nun[i]&0x7) # Use “&0x7f” to display the decimal point.

For more information about the methods used by the OutputDevice class in the GPIO Zero library,please refer
to: https://gpiozero.readthedocs.io/en/stable/api_output.html#outputdevice

support@freenove.com [l

163

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Project 18.2 4-Digit 7-Segment Display

Now, let’s try to control more-than-one digit displays by using a Four 7-Segment Display in one project.

Component List

Raspberry Pi (with 40 GPIO) x1 Jumper Wire x30

GPIO Expansion Board & Wire x1

Breadboard x1
74HC595 x1 PNP 4-Digit 7-Segment Display x1 Resistor 220QQ | Resistor 1KQ
transistor x4 x8 x4

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com K

Component knowledge

4 Digit 7-Segment Display

A 4 Digit 7-segment display integrates four 7-Segment Displays into one module, therefore it can display
more characters. All of the LEDs contained have a Common Anode and individual Cathodes. Its internal
structure and pin designation diagram is shown below:

12111098 7

123456

The internal electronic circuit is shown below, and all 8 LED cathode pins of each 7-Segment Display are
connected together.

[1 2 19 18 16
A

f= S] 4
WAVAVAVA: VaVAVAVAVAVAVAVA: YA

¥
¥
I'es
res

¥
r'7's
I'es
r'e's
r'e’s
94

1117 14 12 |1 [10]5 |3

Display method of 4 Digit 7-segment display is similar to 1 Digit 7-segment display. The difference between
them is that the 4-Digit displays each Digit is visible in turn, one by one and not together. We need to first
send high level to the common end of the first Digit Display, and send low level to the remaining three
common ends, and then send content to 8 LED cathode pins of the first Digit Display. At this time, the first 7-
Segment Display will show visible content and the remaining three will be OFF.

Similarly, the second, third and fourth 7-Segment Displays will show visible content in turn by scanning the
display. Although the four number characters are displayed in turn separately, this process is so very fast that
it is unperceivable to the naked eye. This is due to the principle of optical afterglow effect and the vision
persistence effect in human sight. This is how we can see all 4 number characters at the same time. However,
if each number character is displayed for a longer period, you will be able to see that the number characters
are displayed separately.

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Circuit
Schematic diagram
3. 3V
Q1
MOS:
R9
1kQ
6
— 7 [z i I -
11)7 j4]2 |1 [10]|5 |3
3.3V
220Q - ’5
33V 5V
—31SDA1 TXDO}-8
[« =2 SCL1 RXDO |10
5[l —L1GPIO4 GPI018}12—Grioig
S191S Gri017 ——11{GPIO17 GPI023}16Gpioz3
R GPI027 13 1GPI027 GPI024 18 "Gricag
HHE " Gpi022 151GPI022 GPI025}22
slele j— MOsI 19 Imosi CEO0}-24—
211miso CE1}26-
paricsss g1)—— Q1 vee |1 ~23.4SCLK SCLOf28~
s 02 ——5| Q2 Qo |= -2L1SpAD GPIO12}32—
74HC595.Q3 ——7 Q3 DS |13 GPI024 291GPIO5 GPI016 38~
Tancsss 01 ——o| Q4 ot [——|I -311GpPIos GPI020[38~
74HC595_Q5 g1 Q5 STCP 13 -331GPIO13 GPI021 40
74HC595 Q6 ———— Q6 SH_CP 10 GPIO1§ .. 351GPI019
[7ancs95.Q7) ——1 Q7 MR |5 A ~3JGPIO26 Raspberry Pi
Ship QF [GPIO Extension Shield
74HC595 GND

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [

Hardware connection

Raspberry Pi GPIO Extension Shield

.
.
oo .
o .
.. .
#GPIO17 GPIO18# I
#GPIO27 GNDe)
#GPI022 GPI023e &
. .
_— L]
B .
. .
m———u] .
- o
. .
. .
. .
LY #GPIO19 GPIO16e B
LI #GP1026 GPI020e B
LA «GND GPIO21e 20
L L
. .
—_— .
L 3 . -
LN 2 . .
) .
o .
.« .
.
. .
e o .
L]
L 3 .
e e e o o L
e o
LN 3 .
.o B
==

LR B O B I R N
LI I B O O B R
LI I O B B AR

.“Q LR
E.'. LR
. o ° e
L
e o C

L LR 3
L

L . e
e e . e
.
e o o LI
e o o
e e o

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Code

In this code, we use the 74HC595 IC Chip to control the 4-Digit 7-Segment Display, and use the dynamic
scanning method to show the changing number characters.

Python Code 18.2.1 StopWatch

This code uses the four step four pat mode to drive the Stepper Motor clockwise and reverse direction.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 18.2.1_StopWatch directory of Python code.

cd ~/Freenove_Kit/Code/Python_GPIOZero_Code/18.2.1_StopWatch

2. Use python command to execute code "StopWatch.py".

python StopWatch.py

After the program is executed, 4-Digit 7-segment start displaying a four-digit number dynamically, and the
will plus 1 in each successive second.

The following is the program code:

from gpiozero import OutputDevice
import time

import threading

LSBFIRST = 1

MSBFIRST = 2

define the pins connect to 74HC595

dataPin = OutputDevice (24) # DS Pin of 74HC595
latchPin = OutputDevice (23) # ST CP Pin of 74HC595
clockPin = OutputDevice (18) # SH CP Pin of 74HC595

num = (0xc0, 0xf9, Oxad, 0xb0, 0x99, 0x92, 0x82, 0x 8, 0x80, 0x90)

digitPin = (17,27, 22, 10) # Define the pin of 7-segment display common end

outputs = list(map (lambda pin: OutputDevice(pin), digitPin))

counter = 0 # Variable counter, the number will be dislayed by 7-segment display

t=0 # define the Timer object

def shiftOut (order, val):
for i in range(0, 8) :
clockPin. of f ()
if (order == LSBFIRST) :
dataPin.on() if (0x01&(val>>i)==0x01) else dataPin. off()
elif (order == MSBFIRST) :
dataPin.on() if (0x80&(val<<i)==0x80) else dataPin. off()

clockPin. on()

def outData(data): # function used to output data for 74HC595
latchPin. of ()
shiftOut (MSBFIRST, data)
latchPin. on ()

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com DM} support@freenove.com JEKSE]

def selectDigit(digit): # Open one of the 7-segment display and close the remaining three, the
parameter digit is optional for 1,2,4,8

outputs[0]. off() if ((digit&0x08) == 0x08) else outputs[0].on()

outputs[1]. off() if ((digit&0x04) == 0x04) else outputs[1].on()

outputs[2]. off() if ((digit&0x02) == 0x02) else outputs[2].on()

outputs[3]. off() if ((digit&0x01) == 0x01) else outputs[3].on()

def display (dec): # display function for 7-segment display
outData (0xff) # eliminate residual display
selectDigit (0x01) # Select the first, and display the single digit
outData (num[dec%10])
time. sleep(0.003) # display duration
outData (0xff)
selectDigit (0x02) # Select the second, and display the tens digit
outData (num[dec%100//10])
time. sleep (0. 003)
outData (0xff)
selectDigit (0x04) # Select the third, and display the hundreds digit
outData (num[dec%1000//100])
time. sleep (0. 003)
outData (0xff)
selectDigit (0x08) # Select the fourth, and display the thousands digit
outData (num[dec%10000//1000])
time. sleep (0. 003)
def timer():

global counter

global t

t = threading. Timer (1. 0, timer) # reset time of timer to ls
t. start () # Start timing

counter+=1

print (“counter : %d”%counter)

def loop():
global t
global counter
t = threading. Timer (1.0, timer) # set the timer
t. start () # Start timing
while True:

display (counter) # display the number counter

def destroy():
global t
dataPin. close()

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

latchPin. close ()

clockPin. close ()

t. cancel ()
if name == main ’: # Program entrance
print (Program is starting...)
try:
Loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

print ("Ending program”)

First, define the pin of 74HC595 and 7-segment display common end, character encoding and a variable
"counter” to be displayed counter.
define the pins connect to 74HC595

dataPin = OutputDevice (24) # DS Pin of 74HC595
latchPin = OutputDevice (23) # ST CP Pin of 74HC595
clockPin = OutputDevice (18) # SH CP Pin of 74HC595

num = (0xc0, 0xf9, Oxa4, 0xb0, 0x99, 0x92, 0x82, 0x 8, 0x80, 0x90)
digitPin = (17,27, 22, 10) # Define the pin of 7-segment display common end
outputs = list (map (lambda pin: OutputDevice(pin), digitPin))

counter = 0 # Variable counter, the number will be dislayed by 7-segment display

Subfunction selectDigit (digit) function is used to open one of the 7-segment display and close the other 7-
segment display, where the parameter digit value can be 1,2,4,8. Using "|" can open a number of 7-segment
display.

def selectDigit(digit): # Open one of the 7-segment display and close the remaining three, the
parameter digit is optional for 1,2,4,8
outputs[0].off Q) if ((digit&0x08) == 0x08) else outputs[0].on()
outputs[1].off Q) if ((digit&0x04) == 0x04) else outputs[1].on()
outputs[2].off Q) if ((digit&0x02) == 0x02) else outputs[2].on()
outputs[3].off Q) if ((digit&0x01) == 0x01) else outputs[3].on()
Subfunction outData (data) is used to make the 74HC595 output an 8-bit data immediately.
def outData(data): # function used to output data for 74HC595
latchPin. of ()
shiftOut (MSBFIRST, data)
latchPin. on ()

Subfunction display (int dec) is used to make a 4-Digit 7-Segment Display a 4-bit integer. First open the
common end of first 7-Segment Display Digit and turn OFF the other three Digits, now it can be used as 1-
Digit 7-Segment Display. The first Digit is used for displaying single digits of "dec", the second Digit is for tens,
the third for hundreds and fourth for thousands respectively. Each digit will be displayed for a period by using
delay (). The time in this code is very brief, so you will a mess of Digits. If the time is set long enough, you will
see that every digit is displayed independently.

def display(dec): #display function for 7-segment display
outData(Oxff) #eliminate residual display
selectDigit (0x01) #Select the first, and display the single digit

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B ww.freenove.com

D4 support@freenove.com [N

outData (num[dec%10])

time. sleep(0.003) #display duration

outData (0xff)

selectDigit (0x02) #Select the second, and display the tens di

outData (num[dec%100/10])

time. sleep (0. 003)

outData (0xff)

selectDigit (0x04) #Select the third, and display the hundreds
outData (num[dec%1000/100])

time. sleep (0. 003)

outData (0xff)

selectDigit (0x08) #Select the fourth, and display the thousan
outData (num[dec%10000/1000])

time. sleep (0. 003)

git

digit

ds digit

Subfunction timer () is the timer callback function. When the time is up, this function will be executed.
Accompanied by the execution, the variable counter will be added 1, and then reset the time of timer to 1s.

1s later, the function will be executed again.

def timer(): #timer function
global counter

global t

t = threading. Timer (1.0, timer) fireset time of timer to 1s
t. start () #Start timing

counter+=1

print (“counter : %d”%counter)

Subfunction setup(), configure all input output modes for the GPIO pin used.

Finally, in loop function, make the digital tube display variable counter value in the while loop. The value will

change in function timer (), so the content displayed by 7-segment display wil

| change accordingly.

def loop():
global t
global counter

t = threading. Timer (1. 0, timer) # set the timer

t. start () #Start timing
while True:
display (counter) ftdisplay the number counter

After the program is executed, press "Ctrl+C", then subfunction destroy() will be
and timers will be released in this subfunction.

executed, and GPIO resources

def destroy():
global t
dataPin. close ()
latchPin. close ()
clockPin. close ()

t. cancel ()

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com

www.freenove.com .

Chapter 19 74HC595 & LED Matrix

Thus far we have learned how to use the 74HC595 IC Chip to control the Bar Graph LED and the 7-Segment

Display. We will now use 74HC595 IC Chips to control an LED Matrix.

Project 19.1 LED Matrix

In this project, we will use two 74HC595 IC chips to control a monochrome (one color) (8X8) LED Matrix to
make it display both simple graphics and characters.

Component List

Raspberry Pi (with 40 GPIO) x1

Breadboard x1

GPIO Extension Board & Ribbon Cable x1

Jumper x36

—-- -

7T4HCS95 x2

8X8 LEDMatrix x1

Resistor 220Q x8

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com

Component knowledge

LED matrix

An LED Matrix is a rectangular display module that consists of a uniform grid of LEDs. The following is an 8X8
monochrome (one color) LED Matrix containing 64 LEDs (8 rows by 8 columns).

161514131211 10 9
00000000
00000000
00000000
00000000

123456738

In order to facilitate the operation and reduce the number of ports required to drive this component, the
Positive Poles of the LEDs in each row and Negative Poles of the LEDs in each column are respectively
connected together inside the LED Matrix module, which is called a Common Anode. There is another
arrangement type. Negative Poles of the LEDs in each row and the Positive Poles of the LEDs in each column
are respectively connected together, which is called a Common Cathode.

The LED Matrix that we use in this project is a Common Anode LED Matrix.

Connection mode of Common Anode Connection mode of Common Cathode
13.3.410.611 1516 133410 6111516

9 X A A X M ¥ A O XM M M MMM M KN
14_x M M ¥ M ¥ 2 14 6 M M M X A M X

8_x M M X ¥ M ¥ N 8 M M MM MM MK

12 X M ¥ ¥ X] 12_ 8 M M XM ¥ &M M X

1 ¥ X X M X X T M M M MMM N

7 M A X XA 7T X MMM KNMH

2_x M A A & 2 A 2 XM MMM KK NMH

S5 X X X X X X X S K XK X K K K K X

support@freenove.com Il

173

mailto:support@freenove.com
http://www.freenove.com/

174

support@freenove.com www.freenove.com [l

Here is how a Common Anode LED Matrix works. First, choose 16 ports on RPI board to connect to the 16
ports of LED Matrix. Configure one port in columns for low level, which makes that column the selected port.
Then configure the eight port in the row to display content in the selected column. Add a delay value and
then select the next column that outputs the corresponding content. This kind of operation by column is
called Scan. If you want to display the following image of a smiling face, you can display it in 8 columns, and
each column is represented by one byte.

1 2 3 45 6 7 8
0/0(0|0|0f0O|O0O]|O
O(0|1|1|1|2(0|0
0/1/0|10|0f0|1]0
1{0/1]0(0|1|0]|1
1{0/0|0|0|0]|0]|12
110{0|{1|1]0|0]|1
0/1/010|0f0|1]0
0(0|1|1|1|112(0|0

Column Binary Hexadecimal

1 0001 1100 Oxlc

2 0010 0010 0x22

3 0101 0001 0x51

4 0100 0101 0x45

5 0100 0101 0x45

6 0101 0001 0x51

7 0010 0010 0x22

8 0001 1100 Ox1c

To begin, display the first column, then turn off the first column and display the second column. (and so on)
turn off the seventh column and display the 8th column, and then start the process over from the first column
again like the control of LED Bar Graph project. The whole process will be repeated rapidly in a loop. Due to
the principle of optical afterglow effect and the vision persistence effect in human sight, we will see a picture
of a smiling face directly rather than individual columns of LEDs turned ON one column at a time (although
in fact this is the reality we cannot perceive).

Scanning rows is another option to display on an LED Matrix (dot matrix grid). Whether scanning by row or
column, 16 GPIO is required. In order to save GPIO ports of control board, two 74HC595 IC Chips are used in
the circuit. Every 74HC595 IC Chip has eight parallel output ports, so two of these have a combined total of
16 ports, which is just enough for our project. The control lines and data lines of the two 74HC595 IC Chips
are not all connected to the RPi, but connect to the Q7 pin of first stage 74HC595 IC Chip and to the data pin
of second IC Chip. The two 74HC595 IC Chips are connected in series, which is the same as using one
"74HC595 IC Chip" with 16 parallel output ports.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com < support@freenove.com [N

Circuit

In circuit of this project, the power pin of the 74HC595 IC Chip is connected to 3.3V. It can also be connected
to 5V to make LED Matrix brighter.

Schematic diagram
3.3V 3.3V
16[1 16
@ o[l Ho of
@l e npfem,
Qs sTcp [:2 latchPi] 2{os stcp |2
Q6 SH_CP 170 cIockPin| 5 Q6 SH_CP 10 -
Q7 MR) 8 Q7 MR) @
1 6No Q7 |- :I—“\ 200 ~{ GND Q7
— 74HC595 — 74HC595
33
@ [%j @ g @ g & & 33V 5V
2T EE TR R i—ggt\; TXD0 2
gﬁ(X A A A —L1GPI04 GPIO18 é
. dataPin GPIO17 GPIO23
W"’(A A latchPin GPI027 GPI024}18
GPI022 GPI025 |-22—
@8% % ﬁ(% % % % % JiMOSl CEo_Zﬂ-_
o ¥ o 2 2 2] 2 A CE e
[rowa)— SCLK SCLO
-2L1SDAD GPI012 |32~
@‘% X A xR 29 1GPIO5 GPI016 {38~
-211GPI06 GPI020}-38—
W’ﬁ(A X X x A -331GPI013 GPI021 140
-321GPI019
sz X j 2 X j;: :{ X ~31GPIO26 Raspberry Pi
GPIO Extension Shield
e X X X X b

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

i
Second stage L
74HC595: B
j\

.
.
o
°
.
— E
.
.
L)
Ty
L)
L)
LY
* o
° e
* o G
® *
* o
DR
°® 00
C—————
First stage i o
7TAHC595: A gy
j\ * o oo
¢ ° CEEEEEEEEENED
® * » s o =
e 0 000 .
LR .
L .
120IdD N9 R0
o 0201dD 9701d9* KICI
o #9101d9 610149 CECEENE
o *aND £101d9* CRCHIN
o 5710149 90149 ERCHIN 3
o *OND S0Id9* ECEEEE
%01 ovase G
Y 11D ANO* R]
L 33)':)S. L .
LY o]
Ty o .
L) [e——ro—=—u]
* Cammm—
o *OND £701d9*
> #3101dD £L01dD* R
LY 200Xy e
LI .Ouxl L]
LI .GNB L
o0
.As LR

PId1yS uoisualx3 OIdo Id Auraqdsey

16151413121110 9

304
ar)

zig
T
vug
sud

[TaHCS95 Pin QO)

o L
s X
-

[74HCS% Pin Q1

TaHCS% Pin Q2 ey

74HC5%5 Pin Q3 v

o
o
o
e
: b
[T4HCS95 Pin Q5. 3 #
o
o

2%
X

fraricsss pin Q6

P P P s P b b P
P B o o o

ANNNANNN
AN
ANANANNS

o b b P e o b B

francsss pin Q7

123456738

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www freenove.com 4 support@freenove.com [N

Code

Two 74HC595 IC Chips are used in this project, one for controlling the LED Matrix’s columns and the other
for controlling the rows. According to the circuit connection, row data should be sent first, then column data.
The following code will make the LED Matrix display a smiling face, and then display characters "0 to F"
scrolling in a loop on the LED Matrix.

Python Code 19.1.1 LEDMatrix

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 19.1.1_LEDMatrix directory of Python language.

cd ~/Freenove_Kit/Code/Python_GPI0Zero_Code/19.1.1_LEDMatrix

2. Use Python command to execute Python code “LEDMatrix.py”.

python LEDMatrix.py

After the program is executed, the LED Matrix display a smiling face, and then display characters "0 to F"
scrolling in a loop on the LED Matrix.

The following is the program code:

from gpiozero import OutputDevice

import time

LSBFIRST = 1

MSBFIRST = 2

dataPin = OutputDevice (17) # DS Pin of 74HC595(Pinl4)
latchPin = OutputDevice (27) # ST CP Pin of 74HC595(Pin12)
clockPin = OutputDevice (22) # CH CP Pin of 74HC595(Pinll)

pic = [0xlc, 0x22, 0x51, 0x45, 0x45, 0x51, 0x22, Ox1c] # data of smiling face

data = [# data of "0-F”
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, Ox3E, 0x41, 0x41, O0x3E, 0x00, 0x00,
0x00, 0x00, 0x21, 0x7F, 0x01, 0x00, 0x00, 0x00,
0x00, 0x00, 0x23, 0x45, 0x49, 0x31, 0x00, 0x00,
0x00, 0x00, 0x22, 0x49, 0x49, 0x36, 0x00, 0x00,
0x00, 0x00, OxOE, 0x32, 0x7F, 0x02, 0x00, 0x00,
0x00, 0x00, 0x79, 0x49, 0x49, 0x46, 0x00, 0x00,
0x00, 0x00, Ox3E, 0x49, 0x49, 0x26, 0x00, 0x00,
0x00, 0x00, 0x60, 0x47, 0x48, 0x70, 0x00, 0x00,
0x00, 0x00, 0x36, 0x49, 0x49, 0x36, 0x00, 0x00,
0x00, 0x00, 0x32, 0x49, 0x49, O0x3E, 0x00, 0x00,
0x00, 0x00, Ox3F, 0x44, 0x44, O0x3F, 0x00, 0x00,
0x00, 0x00, Ox7F, 0x49, 0x49, 0x36, 0x00, 0x00,
0x00, 0x00, Ox3E, 0x41, 0x41, 0x22, 0x00, 0x00,
0x00, 0x00, Ox7F, 0x41, 0x41, O0x3E, 0x00, 0x00,
0x00, 0x00, Ox7F, 0x49, 0x49, 0x41, 0x00, 0x00,
0x00, 0x00, Ox7F, 0x48, 0x48, 0x40, 0x00, 0x00,

H #+ #+ H# H O H#H O H#H O H H H O H OH O H O H T H H
N

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, # ”~ ”

def shiftOut (order, val):
for i in range(0, 8) :
clockPin. of f ()
if (order == LSBFIRST) :
dataPin.on() if (0x01&(val>>i)==0x01) else dataPin.off()
elif (order == MSBFIRST) :
dataPin.on() if (0x80& (val<<i)==0x80) else dataPin.off()

clockPin. on()

def loop():
while True:
for j in range(0, 500): # Repeat enough times to display the smiling face a period of

time
x=0x80
for i in range (0, 8) :
latchPin. off ()
shiftOut (MSBFIRST, pic[i]) #first shift data of line information to first stage
T4HC959
shiftOut (MSBFIRST, “x) #then shift data of column information to second stage
T4HC959

latchPin.on()# Output data of two stage 74HC595 at the same time
time. sleep(0.001) # display the next column
O>=1
for k in range (0, len(data)—8): #len(data) total number of “0-F” columns
for j in range(0, 20) : # times of repeated displaying LEDMatrix in every frame, the
bigger the ”j”, the longer the display time.
x=0x80 # Set the column information to start from the first column
for i in range (k, k+8) :
latchPin. of £ ()
shiftOut (MSBFIRST, datali])
shiftOut (MSBFIRST, “x)
latchPin. on()
time. sleep (0. 001)
>=1
def destroy():
dataPin. close ()
latchPin. close()

clockPin. close ()

if name == main ' : # Program entrance
print (Program is starting...)
try:

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Loop ()
except KeyboardInterrupt: # Press ctrl-c to end the program.
destroy ()

print ("Ending program”)

The first “for” loop in the “while” loop is used to display a static smile. Displaying column information from left
to right, one column at a time with a total of 8 columns. This repeats 500 times to ensure sufficient display
time.

for j in range(0,500) : # Repeat enough times to display the smiling face a period of

time
x=0x80
for i in range (0, 8) :
latchPin. off ()
shiftOut (MSBFIRST, pic[i]) #first shift data of line information to first stage
T4HC959
shiftOut (MSBFIRST, “x) #then shift data of column information to second stage
T4HC959

latchPin. on()# Output data of two stage 74HC595 at the same time
time. sleep(0.001) # display the next column
xO>=1

The second “for” loop is used to display scrolling characters "0 to F", for a total of 18 X 8 = 144 columns.
Displaying the 0-8 column, then the 1-9 column, then the 2-10 column...... and so on--138-144 column in
consecutively to achieve the scrolling effect. The display of each frame is repeated a certain number of times
and the more repetitions, the longer the single frame display will be and the slower the scrolling movement.

for k in range(0, len(data)—8): #len(data) total number of “0-F” columns
for j in range(0,20): # times of repeated displaying LEDMatrix in every frame, the
bigger the ”j”, the longer the display time.

x=0x80 # Set the column information to start from the first column

for i in range(k, k+8) :
latchPin. of f ()
shiftOut (MSBFIRST, data[i])
shiftOut (MSBFIRST, “x)
latchPin. on()
time. sleep (0. 001)
>=1

support@freenove.com [l

179

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Chapter 20 LCD1602

In this chapter, we will learn about the LCD1602 Display Screen,

Project 20.1 12C LCD1602

There are LCD1602 display screen and the 12C LCD. We will introduce both of them in this chapter. But what
we use in this project is an 12C LCD1602 display screen. The LCD1602 Display Screen can display 2 lines of
characters in 16 columns. It is capable of displaying numbers, letters, symbols, ASCIl code and so on. As shown
below is a monochrome LCD1602 Display Screen along with its circuit pin diagram

— M LNON OO ™+ —

o~

o

O
wn 8 o-—amswmon~Aadls
20293, 533888585888
AT NS T2,

I2C LCD1602 Display Screen integrates a 12C interface, which connects the serial-input & parallel-output
module to the LCD1602 Display Screen. This allows us to only use 4 lines to operate the LCD1602.

- GND

2lycc ((mmmmm
i SDA EEEEN
44 scL =

12C LCD1602 Module

The serial-to-parallel IC chip used in this module is PCF8574T (PCF8574AT), and its default I2C address is
0x27(0x3F). You can also view the RPI bus on your I2C device address through command "i2cdetect -y 1"
(refer to the "configuration I2C" section below).

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com < support@freenove.com [EMEH

Below is the PCF8574 chip pin diagram and its module pin diagram:
PCF8574 chip pin diagram: PCF8574 module pin diagram

Ao [1] » [16] Voo
A1 [2] [15] spa
A2 [3] [14] scL
PO [4] pcrasza [12) INT

p1 [5] PCFEST4A 2] 7

GND

VDD GND
VO VCC
PO SDA
P1 SCL

T

e e Y = S)
=
o]

2 [€ mk e
e [T 7] es o
18 GnD
v,
ss [&] o] P4 PCF8574

PCF8574 module pins and LCD1602 pins correspond to each other and connected to each other:

GNDf—
VCC}—
SDA}—
SCL}—

<

I~

w

on [m) E

Z0oor-ranQOOO0Oswor~nZ |G

O>>ann0zzzzaoonooaO |y
—| | | | 1| ©f [o | 2| =| N 2| T | L
—| ou| | <t 0] o ~| 0| | S| | N P F| 0| ©
W owm w o NM<TIOO M~ + L
m8>n:§ AooOm@Ommon 0

>s ¥ ocooooooowd |y

- %]

©

[m]

O

-

Because of this, as stated earlier, we only need 4 pins to control thel6 pins of the LCD1602 Display Screen
through the 12C interface.
In this project, we will use the 12C LCD1602 to display some static characters and dynamic variables.

Component List

Raspberry Pi (with 40 GPIO) x1 Jumper Wire x4
GPIO Extension Board & Ribbon Cable x1
Breadboard x1

I2C LCD1602 Module x1

— - -

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com

www.freenove.com .

Circuit

Note that the power supply for 12C LCD1602 in this circuit is 5V.

Schematic diagram

GND

5

41|
2
3

SCL

12C LCD1602 Module

3.3V 5V
3 1SDA1 TXDO |8~
S1sCL1 RXDO 10
—L1GPIO4 GPIO18}12
AGpio17 GPI1023 |16
131Gpi027 GPI1024 |18
121GpI022 GPI1025 22
19 Imosi CEO0}24—
211miso CE1}25
231sCLK SCLO 28~
271SDA0 GPIO12}32—
291GPI05 GPIO16}35—
S11GPios GP1020 38—
-331GPI013 GPI021}40
%\GPIOW
(GP1026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com
NOTE: It is necessary to configure 12C and install Smbus first (see chapter 7 for details)

o o ° ° . e o0 . o o ® e 0 00

LN] ® o 0o 0 0 o o 0 00 ® o 0 0 0 o 0o 00 ® o 0 0 0

© 0 0 0 0 0 0 0 0 0 0 00 0 000 0O O 0O 0O O OGO OO OO e
© 0 0 0 0 0 0 0 0 0 00 O O OO0 O OO O OGO OO OSSO OGS OO
© © 0 0 0 © 0 0 0 0 0 O O 0O 00O OO OO0 OO O OO G O OO OO OO OO
L I B B B B B B D R D B B B L B B B B
© © 0 0 0 © 0 0 0 0 0 O 00 GGG OO OO OO OO G GO OGO e e

® © 0 0 0 0 0 0 00 ° 0 ° 0 0 O 0O O e O O OO O SO O O S G O e e
® © 06 0 0 © 00 6 0 0 0 00 0 0 0 0 0 0 e OO O G G 0O O G e
® © 6 0 6 0 0 0 0 0 0 0 0 0 0 O 0O O O OO O O O G OO S G S S O
® © 0 6 6 © © 0 0 0 ° ° 0 0 0 00 O O 0 O O G OO 0 O S OO e e
® © 6 6 0 0 0 60 6 0 © 0 0 O O 0 O OO 0 O 0 G S G0 e 0 S G e e

& ©
- B
s <
- (%]
- [
- B
=~
- c
= o

2
- x
- w
& o
= o
Ly O
= B
E
= =
= B
=l o
- Q
- 7
= ©
- 4

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
mailto:support@freenove.com

B www .freenove.com

< support@freenove.com [EMEE

Code

This code will have your RPi's CPU temperature and System Time Displayed on the LCD1602.

Python Code 20.1.1 12CLCD1602

If you did not configure 12C and install Smbus, please refer to Chapter 7. If you did, continue.
First, observe the project result, and then learn about the code in detail.
If you have any concerns, please contact us via: support@freenove.com

1.

Use cd command to enter 20.1.1_ 12CLCD1602 directory of Python code.

cd ~/Freenove_Kit/Code/Python_GPIOZero_Code/20.1.1_I2CLCD1602
2. Use Python command to execute Python code “I2CLCD1602.py".
python I2CLCD1602.py
After the program is executed, the LCD1602 Screen will display your RPi’s CPU Temperature and System Time.
So far, at this writing, we have two types of LCD1602 on sale. One needs to adjust the backlight, and the other
does not.
The LCD1602 that does not need to adjust the backlight is shown in the figure below.

~~0

7o 1085558058588658888: Q

If the LCD1602 you received is the following one, and you cannot see anything on the display or the display
is not clear, try rotating the white knob on back of LCD1602 slowly, which adjusts the contrast, until the screen

can display clearly.

The following is the program code:

o

NIV 2Y »
CanEd
w —_—

-

1

S O1 B~ W DN

import smbus

from time import sleep, strftime
from datetime import datetime
from LCD1602 import CharLCD1602

1¢d1602 = CharLCD1602 ()

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

def get cpu temp(): # get CPU temperature from file
”/sys/class/thermal/thermal zone0/temp”

tmp = open(’ /sys/class/thermal/thermal zone0/temp’)
tmp. read ()

cpu
tmp. close ()
return ' {:.2f} . format (float (cpu)/1000) + C

def get time now(): # get system time
return datetime.now(). strftime(%H: %M: %S’)

def loop():
1c¢d1602. init led()
count = 0
while (True) :
1¢d1602. clear ()
1cd1602. write(0, 0, "CPU: ~ + get cpu temp())# display CPU temperature
1cd1602. write(0, 1, get time now()) # display the time
sleep (1)
def destroy():
1¢d1602. clear ()

if name == main
print (Program is starting ...)
try:
Loop ()

except KeyboardInterrupt:
destroy ()

In a while loop, set the cursor position, and display the CPU temperature and time.
while (True) :
1¢d1602. clear ()
1cd1602. write(0, 0, "CPU: ~ + get cpu_temp())# display CPU temperature
1cd1602. write (0, 1, get time now()) # display the time
sleep (1)
CPU temperature is stored in file “/sys/class/thermal/thermal_zone0/temp”. Open the file and read content of

the file, and then convert it to Celsius degrees and return. Subfunction used to get CPU temperature is shown
below:

def get cpu temp(): # get CPU temperature and store it into file
“/sys/class/thermal/thermal zoneO/temp”
tmp = open(’ /sys/class/thermal/thermal zone0/temp’)
cpu = tmp. read()
tmp. close()
return ' {:.2f} . format (float(cpu)/1000) + C
Subfunction used to get time:

- def get time now(): # get the time

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com < support@freenove.com [EMESS

‘ ‘ return datetime.now().strftime(%H : %M : %S’) ‘
Details about LCD1602.py:
ModulelCD1602
This module provides the basic operation method of LCD1602, including class CharLCD1602.

Some member functions are described as follows:

def init_lcd(self,addr=None, bl=1) : LDC1602 initializes the setting. When the addr is None, the [2C
address of the device will be automatically scanned. You can also specify the [2C address, bl=1 to enable
the backlight setting.

def clear(self): clear the screen

def send_command(self,comm): set the cursor position

def i2c_scan(self): scan the device 12C address

def write(self,x, y, str): display contents

More information can be viewed through opening LCD1602.py.

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Chapter 21 Hygrothermograph DHT11

In this chapter, we will learn about a commonly used sensor called a Hygrothermograph DHT11.

Project 21.1 Hygrothermograph

Hygrothermograph is an important tool in our lives to give us data on the temperature and humidity in our
environment. In this project, we will use the RPi to read Temperature and Humidity data of the DHT11 Module.

Component List

Raspberry Pi (with 40 GPIO) x1 DHT11 x1 Resistor 10kQ x1
GPIO Expansion Board & Ribbon Cable x1
Breadboard x1

Jumper Wire x4

—-- -

Component knowledge

The Temperature & Humidity Sensor DHT11 is a compound temperature & humidity sensor, and the output
digital signal has been calibrated by its manufacturer.

VCC CnMnw»
SDA

NC

GND

1234 DHT11

After being powered up, it will initialize in 1 second. Its operating voltage is within the range of 3.3V-5.5V.
The SDA pin is a data pin, which is used to communicate with other devices.

The NC pin (Not Connected Pin) are a type of pin found on various integrated circuit packages. Those pins
have no functional purpose to the outside circuit (but may have an unknown functionality during
manufacture and test). Those pins should not be connected to any of the circuit connections.

koo b

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com < support@freenove.com [MEN

Circuit

Schematic diagram

29
3. %_
3.3V 5V
—31SDA1 TXDO -8~
i SO RXDO 10—
cmw vee LAGPIO4 GPIO18}-12—
SDA |2 111GPIO17 GPI023}-16
NC |- 31GPI027 GPI024 |18
GND 2 1GPI022 GPI025 |22
19.ImoslI CE0 24—
DHT11 21LIMiso CE1 126
il 231scLK SCLO28
- 2714spAo GPIO12}32—
291GPI05 GPIO16 36~
S11GPios GPI1020 |38
-331GPI013 GP1021 40
35.1GPIO19
B GPIO26 Raspberry Pi
GPIO Extension Shield
GND

- see e e oo o ce v e e oo O

s © see oo e
= °

- £

- K

- c o e e 00 000000000000 00
sy © LR ® o0 e 0 s 000000000000
2 o ® 000 0000000000000
- o o ® 600 000000000000 00
- I.I’j o ® e 0000000 000000000
) o

- ™

= K o . I I I I
- T oo o wmJIllj> ¢ ¢ o000 0000000000000 0000000
- I T I I I I I I I I I A I B I
- ? R I I I I I I R
- g ® o o 5 2 gud S °° e e 000 e e e e e 00 e e e
: |

- ©

| o009 e©eeee eeeee eee e
- e e 09 oeeeee oseeee eee e

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

The code is used to read the temperature and humidity data of DHT11, and display them.

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via:

1. Use cd command to enter 21.1.1_DHT11 directory of Python code.

cd ~/Freenove_Kit/Code/Python_GPIOZero_Code/21.1.1_DHT11

2. Use Python command to execute code "DHT11.py".

python DHT11.py

After the program is executed, the Terminal window will display the current total number of read times, the
read state, as well as temperature and humidity values as is shown below:

Since gpiozero does not support DHT11 sensors, RPi.GPIO is used here for control.
The following is the program code:

1 import time

2 import Freenove DHT as DHT

3 DHTPin = 11 #tdefine the pin of DHTI1I

4

5 def Toop(Q):

6 dht = DHT. DHT (DHTPin) #create a DHT class object

7 counts = 0 # Measurement counts

8 while (True) :

9 counts += 1

10 print ("Measurement counts: ”, counts)

11 for i in range (0, 15):

12 chk = dht. readDHT11 () #tiread DHT11 and get a return value. Then determine
whether data read is normal according to the return value

13 if (chk is dht.DHTLIB OK) : #iread DHT11 and get a return value. Then determine
whether data read is normal according to the return value.

14 print ("DHT11, OK!”)

15 break

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com DX support@freenove.com

16 time. sleep(0. 1)

17 print ("Humidity : %. 2f, \t Temperature : % 2f \n”%(dht.humidity, dht. temperature))
18 time. sleep(2)

19

20 if name == main_ :

21 print (Program is starting ...)

22 try:

23 loop ()

24 except KeyboardInterrupt:

25 exit ()

In this project code, we use a module "Freenove_DHT.py", which provides the method of reading the DHT
Sensor. It is located in the same directory with program files "DHT11.py". By using this library, we can easily
read the DHT Sensor. First, we create a DHT class object in the code.

| | dnt = DHT.DHT(DHTPin) #create a DHT class object

Then in the "while" loop, use chk = dht.readDHT11 (DHT11Pin) to read the DHT11, and determine whether
the data read is normal according to the return value "chk”. Then use variable sumCnt to record the number

of times read.
while (True) :

counts += 1

print ("Measurement counts: ”, counts)
for i in range(0, 15) :
chk = dht. readDHT11 () #tiread DHT11 and get a return value. Then determine
whether data read is normal according to the return value
if (chk is dht.DHTLIB OK) : tiread DHT11 and get a return value. Then determine
whether data read is normal according to the return value
print ("DHT11, OK!”)
break
time. sleep(0. 1)
print ("Humidity : %. 2f, \t Temperature : % 2f \n”"%(dht.humidity, dht. temperature))
time. sleep(2)

Finally display the results:

‘ ‘ print ("Humidity : % 2f, \t Temperature : % 2f \n"%(dht.humidity, dht. temperature))

Module "Freenove_DHT.py" contains a DHT class. The class function of the def readDHT11 (pin) is used to
read the DHT11 Sensor and store the temperature and humidity data read to member variables humidity
and temperature.

This is a Python module for reading the temperature and humidity data of the DHT Sensor. Partial
functions and variables are described as follows:

Variable humidity: store humidity data read from sensor

Variable temperature: store temperature data read from sensor

def (pin): read the temperature and humidity of sensor DHT11, and return values used to
determine whether the data is normal.

support@freenove.com Il

189

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com

www.freenove.com .

Chapter 22 Matrix Keypad

Earlier we learned about a single Push Button Switch. In this chapter, we will learn about Matrix Keyboards,
which integrates a number of Push Button Switches as Keys for the purposes of Input.

Project 22.1 Matrix Keypad

In this project, we will attempt to get every key code on the Matrix Keypad to work.

Component List

Raspberry Pi (with 40 GPIO) x1
GPIO Expansion Board & Wire x1
Breadboard x1

Jumper wire

—-- - -

Resistor 10kQ x4

4x4 Matrix Keypad x1

Component knowledge

4x4 Matrix Keypad

A Keypad Matrix is a device that integrates a number of keys in one package. As is shown below, a 4x4 Keypad

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com

Matrix integrates 16 keys (think of this as 16 Push Button Switches in one module):

4x4 Keypad

4f 3] 2 1|

ENPATETIIN
EEE B

Z B8
FO#D

lu|on [0

Ll

Similar to the integration of an LED Matrix, the 4x4 Keypad Matrix has each row of keys connected with one
pin and this is the same for the columns. Such efficient connections reduce the number of processor ports
required. The internal circuit of the Keypad Matrix is shown below.

1 2 3 A

[R _ — _l

4 5 6 B

—_— =T —_— =l
— — O—J —C 01 ~— O—J

7 8 9 C

P —_— —l —_—t
—C — D_l *«— Dj *— O—l

¥ 0 # D

—. —- —. —-
— — o—l —0 01 — 0—1

The method of usage is similar to the Matrix LED, by using a row or column scanning method to detect the
state of each key’s position by column and row. Take column scanning method as an example, send low level
to the first 1 column (Pinl), detect level state of row 5, 6, 7, 8 to judge whether the key A, B, C, D are pressed.
Then send low level to column 2, 3, 4 in turn to detect whether other keys are pressed. Therefore, you can
get the state of all of the keys.

support@freenove.com Il

191

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Circuit

Schematic diagram

10kQ
R2
10kQ

R3
10kQ

o ANAAA R4
B 10kQ

R1

l 3.3V 5V . A |
[SDA1 TXDO }=8—
—21scL1 RXDO |10 ax4 Keypad

—L1GPIO4 GPIO18}-12 S EmEm
GPIoT7 111GPIO17 GPI023}-16 AT 11
GPI027 13 1GPI027 GP1024}-18 ST 1T
GPI022 15 1GP1022 GP1025-22 ST T
MOST 19 Imosi| CE0}24—

21Imiso CE1}26

231sCcLK SCLO}28~

2L1spAo GPI012 32—

291GPI05 GPIO16 |35

S11GPIos GPI1020}38

-331GPI013 GPI021 40

-321GPI019

-3L1GPIO26 Raspberry Pi

GPIO Extension Shield
GND

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com DX support@freenove.com

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

® e e e e oo e e e o0 L}
el . ® o o 0 0 * o ° o 0 ® ® ° 0 0 .
o
£
(2]
c . o ® o 9 0 0 0 0 0 ® e ® 00
-g e o 0 ® o 0 0 0 0 000 ® ® ® 0
@ ° = eense oo 00000 e oo o
c [xg} w NQWVWO ™
[~ ~ SN e oo 0000 ® e 0 0
x == Se288 PP PP PO see e
w o o a aoaoo
o o (L) O VuVov
= o~ mo o
o o~ N
[0) O »BO AS00000An ® © 0 ° 009 0000000000000 00
o EgOﬂEZgEEEEEZ © 0o ® 0000000000000 000000
o VMESSoVnLVLLVLVLLVLY
PO PISTREIREREPES ® & 9 9 9 0 % 9 O O S S S S e PSS YOO
Q K R © 6000000000000 00000 00 00
g vpeeesVeISIETY ®© © 9000000000000 00000000
@ ;
(%]
© —
o . e o000 e o 0 0 0 e o 00 0 oo
. e oo 0w e o0 0 0 ® o 0 00 o

support@freenove.com Il

193

mailto:support@freenove.com
http://www.freenove.com/

This code is used to obtain all key codes of the 4x4 Matrix Keypad, when one of the keys is pressed, the key
code will be displayed in the terminal window.

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 22.1.1_MatrixKeypad directory of Python code.
cd ~/Freenove_Kit/Code/Python_GPIOZero_Code/22.1.1_MatrixKeypad
2. Use Python command to execute code "MatrixKeypad.py".
python MatrixKeypad.py
After the program is executed, pressing any key on the MatrixKeypad, will display the corresponding key code
on the Terminal. As is shown below:
Program
You

¥

= 3 O

The following is the program code:

1 import Keypad #import module Keypad

2 ROWS = 4 # number of rows of the Keypad

3 COLS = 4 finumber of columns of the Keypad

4 keys = [’,72,73,’A, ttkey code

5 '4,’5,'6,'B,

6 "7, 8,79,C,

7 0,8, D]

8 rowsPins = [18, 23, 24, 25] #tconnect to the row pinouts of the keypad

9 colsPins = [10, 22, 27, 17] #tconnect to the column pinouts of the keypad

10 | def loop():

11 keypad = Keypad. Keypad (keys, rowsPins, colsPins, ROWS, COLS) ficreat Keypad object
12 keypad. setDebounceTime (50) #set the debounce time

13 while (True) :

14 key = keypad. getKey () #obtain the state of keys

15 if (key !'= keypad.NULL) : #if there is key pressed, print its key code.
16 print ("You Pressed Key : %c "%(key))

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

195

B www.freenove.com DX support@freenove.com

17

18 if name == main #Program start from here

19 print ("Program is starting ... ”)

20 try:

21 loop()

22 except KeyboardInterrupt: #When ’Ctrl+C’ is pressed, exit the program.
23 print ("Ending program”)

In this project code, we use a custom module "Keypad.py", which is located in the same directory with
program file "MatrixKeypad.py". And this library file, which is transplanted from Arduino function library
Keypad, provides a method to read the keyboard. By using this library, we can easily read the matrix keyboard.
First, import module Keypad. Then define the information of the matrix keyboard used in this project: the
number of rows and columns, code of each key and GPIO pin connected to each column and each row.

import Keypad #import module Keypad
ROWS = 4 # number of rows of the Keypad
COLS = 4 #number of columns of the Keypad
keys = [1,72,73,A, ftkey code
'4,’5,’6",’B,
'7,’8,9,C,
L0, /D]
rowsPins = [18, 23, 24, 25] #tconnect to the row pinouts of the keypad
colsPins = [26, 22, 27, 17] #tconnect to the column pinouts of the keypad

Then, based on the above information, initiates a Keypad class object to operate the Matrix Keyboard.

‘ ‘ keypad = Keypad. Keypad (keys, rowsPins, colsPins, ROWS, COLS)

Set the debounce time to 50ms, and this value can be set based on the actual characteristics of the keyboard's
flexibly, with a default time of 10ms.

‘ ‘ keypad. setDebounceTime (50) ‘
In the "while" loop, use the function key= keypad.getKey () to read the keyboard constantly. If there is a key
pressed, its key code will be stored in the variable "key", and then be displayed.

while (True) :

key = keypad. getKey O
if (key != keypad.NULL) :

print (“You Pressed Key :

ftget the state of keys
if a key is pressed, print out its key code

%e "% (key))

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

The Keypad Library used for the RPi is “transplanted” from the Arduino Keypad Library. The source files is
written by language C++ and translated into Python <can be obtained by visiting
http://playground.arduino.cc/Code/Keypad. As for the “transplanted” function library, the function and
method of all classes, functions, variables, etc. are the same as the original library. Partial contents of the
Keypad Library are described below:

| class Keypad |
def init_ (self, usrKeyMap, row Pins, col Pins, num Rows, num Cols) :

Constructed function, the parameters are: key code of keyboard, row pin, column pin, the number of rows,
the number of columns.

def getKey (self):

Get a pressed key. If no key is pressed, the return value is keypad NULL.

def setDebounceTime (self, ms) :

Set the debounce time. And the default time is 10ms.

def setHoldTime (self,ms):

Set the time when the key holds stable state after pressed.

def isPressed (keyChar) :

Judge whether the key with code "keyChar" is pressed.

def waitForKey () :

Wait for a key to be pressed, and return key code of the pressed key.
def getState():

Get state of the keys.

def keyStateChanged() :

Judge whether there is a change of key state, then return True or False.

For More information about Keypad, please visit: http://playground.arduino.cc/Code/Keypad or through the
opening file "Keypad.py".
For more information about the methods used by the InputDevice class in the GPIO Zero library,please refer

to: https://gpiozero.readthedocs.io/en/stable/api_input.html#inputdevice

For more information about the methods used by the OutputDevice class in the GPIO Zero library,please refer
to: https://gpiozero.readthedocs.io/en/stable/api_output.html#outputdevice

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
http://playground.arduino.cc/Code/Keypad
http://playground.arduino.cc/Code/Keypad
https://gpiozero.readthedocs.io/en/stable/api_input.html#inputdevice

. www.freenove.com

4 support@freenove.com

Chapter 23 Ultrasonic Ranging

In this chapter, we learn a module which use ultrasonic to measure distance.

Project 23.1 Ultrasonic Ranging

In this project, we use ultrasonic ranging module to measure distance, and print out the data in the terminal.

Component List

Raspberry Pi (with 40 GPIO) x1

Breadboard x1

GPIO Expansion Board & Ribbon Cable x1

Ultrasonic Module x1

Jumper Wire x4

—-- -

Resistor 1kQ x3

Component Knowledge

The Ultrasonic Ranging Module uses the principle that ultrasonic waves will be reflected when they encounter
any obstacles. This is possible by counting the time interval between when the ultrasonic wave is transmitted
to when the ultrasonic wave reflects back after encountering an obstacle. Time interval counting will end after
an ultrasonic wave is received, and the time difference (delta) is the total time of the ultrasonic wave's journey
from being transmitted to being received. Because the speed of sound in air is a constant, and is about
v=340m/s, we can calculate the distance between the Ultrasonic Ranging Module and the obstacle: s=vt/2.

RIC (€ CC(
T])))))))

|« S >| 2S=Vit.

The Ultrasonic Ranging Module integrates a both an ultrasonic transmitter and a receiver. The transmitter is

used to convert electrical signals (electrical energy) into high frequency (beyond human hearing) sound waves

(mechanical energy) and the function of the receiver is opposite of this. The picture and the diagram of the

Ultrasonic Ranging Module are shown below:

support@freenove.com [l

197

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

b ool

) E
aw RCA(((

Pin description:

VCC power supply pin
Trig trigger pin
Echo Echo pin
GND GND
Technical specs:
Working voltage: 5V Working current: 12mA
Minimum measured distance: 2cm Maximum measured distance: 200cm

Instructions for Use: output a high-level pulse in Trig pin lasting for least 10uS, the module begins to transmit
ultrasonic waves. At the same time, the Echo pin is pulled up. When the module receives the returned
ultrasonic waves from encountering an obstacle, the Echo pin will be pulled down. The duration of high level
in the Echo pin is the total time of the ultrasonic wave from transmitting to receiving, s=vt/2. This is done
constantly.

10us

Trigger signal
(Input)

Echo time

Echo signal
(Output)

Distance = Echo time x sound velocity / 2.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com < support@freenove.com [EMEE]

Circuit

Note that the voltage of ultrasonic module is 5V in this circuit.

Schematic diagram

3.3V 5v

SDA1 TXDO
SCLA1 RXDO
GP104 GPIO18
GPIO17 GPIO23
GP1027 GPI024
GP1022 GPIO25
MOSI CEO
MISO CE1
1 SCLK SCLO
' SDAO GPI1012
' GPIO5 GPIO16
 GP106 GPI020
GP1013 GPI021
GPIO19

(GP1026 Raspberry Pi
GPIO Extension Shield
GND

A

NOjoo

s o

REBRRENRREEEE L
PEFRPPRRER

e e o 0 e o 00 e e o 0 0 ® o o 0 0 L e o0 00 ‘
® e o0 o o 0 00 ® o 0o 00 e o 0 0 0 ® o 0 0 e o0 0 0 1

5Ve B3

5Ve O
GND» 30
TXDOs B0
RXDOs B30
GNDe 300

= ©

B o

- £

- Kz

- c .

sy © oo

- 13

= 2 5:.]45.’-‘ o---Woooooooo-ooo--oooooooooooooo
- 2 'o_oszs 82888 LA L A L B B R B B B B B L B B L B B B B B B B
E L’Ij :::\DE EU:E: U ® 0 0 0 0 0 0 0000000 GGG LG EGE GGG
- o o vou v o Vvovouv

[4 ~es o Mmoo

- o <+ o O .

= Ce=0n000 i i=l o000 LN ® © 0 9 0 0 0 P P P PP PO PSS e
- O e e P P b]

- P SguaacnasSP= aoooZ ® ® 9 9 0 9 0 O P P P G P PP GGG eSS E O
= o PMLVLVLVLVLLVLLM== VVLVLLVL

- LK XX R (R AERREYe © ¢ ¢ o ¢ 6606006060600 00006060000000000000e0e00e.
: ? L B B B B B B L I B I R L I R B L I B L L R B D B L D L L B]
E % L B B B B B-W.'.'......'...'.."'.l'...'....'l
= B3

- ©

: m L L B B L 4 * o o 0 L L B L L L L B L L L B L B Al
: .. L B L L L B L B At AL Nl Al A AN AL AL L B L ‘

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 23.1.1_UltrasonicRanging directory of Python code.

cd ~/Freenove_Kit/Code/Python_GPIOZero_Code/23.1.1_UltrasonicRanging

2. Use Python command to execute code "UltrasonicRanging.py".

python UltrasonicRanging.py

After the program is executed, aim the Ultrasonic Ranging Module’s detectors (“eyes”) perpendicular to the
surface of an object (try using your hand). The distance between the ultrasonic module and the object will be
displayed in the terminal. As is shown below:

The following is the program code:

1 from gpiozero import DistanceSensor

2 from time import sleep

3

4 trigPin = 23

5 echoPin = 24

6 sensor = DistanceSensor (echo=echoPin, trigger=trigPin , max distance=3)
7

8 def loop():

9 while True:

10 print(Distance: ', sensor.distance * 100, cm’)

11 sleep (1)

12

13 if name == main # Program entrance

14 print (Program is starting...’)

15 try:

16 Toop()

17 except KeyboardInterrupt: # Press ctrl-c to end the program.
18 sensor. close ()

19 print ("Ending program”)

First, define the pins and the maximum measurement distance.
23
24

trigPin

echoPin

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com [AS

sensor = DistanceSensor (echo=echoPin, trigger=trigPin ,max_distance=3) # define the maximum

measured distance 300cm

Finally, in the while loop of main function, get the measurement distance and display it continually.
def loop():

while True:

print (Distance: ', sensor.distance % 100, cm’)

sleep (1)

For more information about the methods used by the DistanceSensor class in the GPIO Zero library,please
refer to: https://gpiozero.readthedocs.io/en/stable/api_input.html#distancesensor-hc-sr04

In the above experiments, you can see that the measurement data is unstable.

Note: For improved accuracy, use the pigpio pin driver rather than the default RPi.GPIO driver (pigpio uses
DMA sampling for much more precise edge timing). This is particularly relevant if you're using Pi 1 or Pi
Zero.

You can refer to UltrasonicRanging?2.py for detailed code.

1. Use cd command to enter 15.1.1_Sweep directory of Python code.

cd ~/Freenove_Kit/Code/Python_GPIOZero_Code/23.1.1_UltrasonicRanging

2. Use python command to execute code "Sweep.py".

python UltrasonicRanging2.py

After the program is executed, the distance between the ultrasonic module and the measured object will
be displayed on the terminal. At this point, the data is more accurate and stable.
This code is based on pigpio libarary. In the latest Raspberry Pi OS, “pigpio” library has been installed. You
only need to run the command to enable it.

sudo pigpiod

spberrypi

aspberrypi

If the “pigpio” library has not yet been installed, please follow the steps to install it.
Run the command to install “pigpio” library.

sudo apt-get update

sudo apt-get install pigpio python-pigpio python3-pigpio

The following is the program code:

1 import os

os. system(“sudo pigpiod”)

from gpiozero import DistanceSensor

from gpiozero. pins. pigpio import PiGPIOFactory

from time import sleep

23
echoPin = 24
my_factory = PiGPIOFactory ()

trigPin

© 0 N O U1 & W N

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

sensor = DistanceSensor (echo=echoPin, trigger=trigPin ,max_distance=3, pin_factory=my factory)

def loop():
while True:
print (Distance: ', sensor.distance * 100, cm’)

sleep (1)

if name == main # Program entrance

print (Program is starting...’)

try:
loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.
sensor. close ()
os. system(“sudo killall pigpiod”)
print ("Ending program”)

See Changing the pin factory for further information:
https://gpiozero.readthedocs.io/en/stable/api_pins.html#changing-pin-factory

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com AV

Chapter 24 RFID

In this chapter, we will learn how to use RFID.

Project 24.1 RFID

In this project, we will use RC522 RFID card reader to read and write the M1-S50 card.

Component List

Raspberry Pi 3B x1 RC522 module x1
GPIO Extension Board & Wire x1
Breadboard x1
Jumper M/F x7

e E—

Mifarel S50 Standard card x1 Mifarel S50 Non-standard card x1
4)\

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

204

support@freenove.com www.freenove.com [l

Component Knowledge

RFID

RFID (Radio Frequency ldentification) is a form of wireless communication technology. A complete RFID
system is generally composed of a transponder and a reader. Generally, the transponder may be known as a
tag, and each tag has a unique code, which is attached to an object to identify the target object. The reader
is a device that reads (or writes) information in the tag.

Products derived from RFID technology can be divided into three categories: passive RFID products, active
RFID products and semi active RFID products, among which, Passive RFID products are the earliest, the most
mature and most widely used products in the market. It can be seen everywhere in our daily life such as, the
bus card, dining card, bank card, hotel access cards, etc., and all of them are classified as close-range contact
recognition. The main operating frequency of Passive RFID products are: 125KHZ (low frequency), 13.56MHZ
(high frequency), 433MHZ (ultrahigh frequency), 915MHZ (ultrahigh frequency). Active and semi active RFID
products work at higher frequencies.

The RFID module we use is a passive RFID product with the operating frequency of 13.56MHz.

MFRC522

The MFRC522 is a highly integrated reader/writer IC for contactless communication at 13.56MHz.

The MFRC522’s internal transmitter is able to drive a reader/writer antenna designed to communicate with
ISO/IEC 14443 A/MIFARE cards and transponders without additional active circuitry. The receiver module
provides a robust and efficient implementation for demodulating and decoding signals from ISO/IEC 14443
A/MIFARE compatible cards and transponders. The digital module manages the complete ISO/IEC 14443A
framing and error detection (parity and CRC) functionality

This RFID Module uses MFRC522 as the control chip, and SPI (Peripheral Interface Serial) as the reserved
interface.

Technical specs:

Operating Voltage 13-26mA(DC)\3.3V
Idle current 10-13mA(DC\3.3V
Sleep current in the <80uA

Peak current <30mA

Operating frequency 13.56MHz

Mifarel S50. Mifarel S70. Mifare Ultralight.

S ted card t
tpported card type Mifare Pro. Mifare Desfire

Size 40mmX60mm

Operation temperature | 20-80 degrees(Celsius)
Storage temperature 40-85 degrees (Celsius)
Operation humidity 5%-95%(Relative humidity)

Mifarel S50 Card

Mifare S50 is often called Mifare Standard with the capacity of 1K bytes. And each card has a 4-bytes global
unique identifier number (USN/UID), which can be rewritten 100 thousand times and read infinite times. Its
storage period can last for 10 years.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com

The Mifare S50 capacity (1K byte) is divided into 16 sectors (SectorO-Sectorl5). Each sector contains 4 data
block (BlockO-Block3. 64 blocks of 16 sectors will be numbered according absolute address, from 0 to 63).

And each block contains 16 bytes (ByteO-Bytel5), 64x16=1024. As is shown in the following table:

Sector No. | Block No. Storage area Block type Absolute
block No.
sector 0 block 0 vendor code vendor block 0
block 1 data block 1
block 2 data block 2
block 3 | Password A-access control-password B control block 3
sector 1 block 0 data block 4
block 1 data block 5
block 2 data block 6
block 3 | Password A-access control-password B control block 7
sector 15 block 0 data block 60
block 1 data block 61
block 2 data block 62
block 3 | Password A-access control-password B control block 63

Each sector has a set of independent password and access control put in its last block, that is, Block 3, which

is also known as sector trailer. Sector 0, block 0 (namely absolute address 0) of S50 is used to store the card

serial number and vendor code, which has been solidified and can't be changed. Except the manufacturer

and the control block, the rest of the cards are data blocks, which can be used to store data. Data block can

be used for two kinds of applications:

(1) used as general data storage and can be operated for reading and writing data.

(2) used as data value, and can be operated for initializing, adding, subtracting and reading the value.

The sector trailer block in each sector is the control block, including a 6-byte password A, a 4-byte access

control and a 6-byte password B. For example, the control block of a brand new card is as follows:
A0 A1 A2 A3 A4 A5 FF 07 80 69 BO B1 B2 B3 B4 BS
password A access control password B

The default password of a brand new card is generally 0A1A2A3A4A5 for password A and BOB1B2B3B4B5 for
password B, or both the password A and password B are 6 FF. Access control is used to set the access
conditions for each block (including the control block itself) in a sector.

Blocks of S50 are divided into data blocks and control blocks. There are four operations, "read”, "write", "add
value", "subtract value (including transmission and storage)" for data blocks, and there are two operations,
"read" and "write" for control blocks.

For more details about how to set data blocks and control blocks, please refer to Datasheet.

By default, after verifying password A or password B, we can do reading or writing operation to data blocks.
And after verifying password A, we can do reading or writing operation to control blocks. But password A can
never be read, so if you choose to verify password A but forget the password A, the block will never be able
to read again. It is highly recommended that beginners should not try to change the contents of control
blocks.

For Mifarel S50 card equipped in Freenove RFID Kit, the default password A and B are both FFFFFFFFFFFF.

support@freenove.com Il

205

mailto:support@freenove.com
http://www.freenove.com/

o~
o
wn
O
e
o
=
(5
o

www.freenove.com [l

< GpI025

3.3V

PN
—~
([
~
SN~

X4 support@freenove.com

206

Circuit

Schematic diagram:

RFID-RC522 Module

00l OO0 ,&&i&%o =
= 0
COWMINOT~ONO©O— J
AQA-NANNLDUd+-~NN . T sl
XX000000Q0000 L9 3
FXaaoo “anoa g5 3
> OO0 ®000 ¢ &
© nN
2 o5l
° __<ERY . we22gd
35900033 4200000 =
aonooaoologaonon
DHOOOOSSHHOOOOG °
444135913
N NN

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

PI2IyS uoisualx3 OIdo Id Aueqdsey

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEE

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Configure SPI

Enable SPI

The SPI interface of raspberry pi is closed by default. You need to open it manually. You can enable the SPI
interface in the following way.
Type the following command in the terminal:

Then open the following dialog box:

Choose “5 Interfacing Options”>"“P4 SPI">“Yes">“Finish” in order and then restart your RPi. Then the SPI
module is started.
Type the following command to check whether the module SPI is loaded successfully:

The following result indicates that the module SPI has been loaded successfully:

dev/spidev0.® /dev/spidev0.1l

Install Python module SPI-Py

If you use Python language to write the code, please follow the steps below to install the module SPI-Py. If
you use C/C++ language, you can skip this step.
Open the terminal and type the following command to install:

support@freenove.com [l

207

mailto:support@freenove.com
http://www.freenove.com/
https://github.com/Freenove/SPI-Py

The project code uses human-computer interaction command line mode to read and write the M1-S50 card.

There are two code files for this project. They are respectively under Python2 folder and Python3 folder. Their
functions are the same, but they are not compatible. Code under Python2 folder can only run on Python2.
And code under Python3 folder can only run on Python3.

First observe the project result, and then learn about the code in detail.

If you need any support, please contact us via:

1. Use cd command to enter RFID directory of Python code.

cd ~/Freenove_Kit/Code/Python_GPIOZero_Code/24.1.1_RFID

2. Use python command to execute code "RFID.py".

python RFID.py

After the program is executed, the following contents will be displayed in the terminal:

pi@raspberrypl cd ~/Freenove_Kit/Code/Python_Code/24.1.1_ RFID/Pyt
pi@raspberrypl

Here, type the command “quit” to exit the program.

Type command "scan”, then the program begins to detect whether there is a card close to the sensing area
of MFRC522 reader. Place a M1-S50 card in the sensing area. The following results indicate that the M1-S50
card has been detected, the UID of which is EECF5C8EFB (HEX).

In the command read<blockstart>, the parameter blockstart is the address of the data block, and the range
is 0-63. As is shown below:

In the command read<blockstart>, the parameter blockstart is the address of the data block, and the range
is 0-63. This command is used to read the data of data block with address “blockstart”. For example, using
command “read 0" can display the content of data block 0. Using the command “read 1" can display the
content of data block 1. As is shown below:

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

Command “dump” is used to display the content of all data blocks in all sectors.

Command <address> <data> is used to write “data” to data block with address “address”, where the address
range is 0-63 and the data length is 0-16. In the process of writing data to the data block, both the contents
of data block before written and after written will be displayed. For example, if you want to write the string
"Freenove" to the data block with address “1”, you can type the following command.

write 1 Freenove

; 7 oo | Freenove
Command “clean <address>" is used remove the contents of the data block with address "address". For
example, if you want to clear the contents of the data block 1 that has just been written, you can type the
following command.
clean 1

00008 | Freenove

The following is the program code :

1 from gpiozero import OutputDevice
2 import MFRC522

3 import sys

4 import os

5

6 # Create an object of the class MFRC522
7 mfrc = MFRC522. MFRC522 ()

8

9

10 def dis ConmandLine():

11 print (,end="")

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com

www.freenove.com

def dis CardID(cardID):

print ("%2X%2X%2X%2X%2X> "% (cardID[0], cardID[1], cardID[2], cardID[3], cardID[4]), end="")
def setup(:

print (“Program is starting ... ~)

print (“Press Ctrl-C to exit.”)

pass

def loop():
global mfrc3s
while(True) :
dis_ConmandLine ()
inCmd = input ()
print (inCmd)
if (inCmd == "scan”):
print (“Scanning ...)
mfrc = MFRC522. MFRC522 ()
isScan = True
while isScan:
Scan for cards
(status, TagType) = mfrc. MFRC522_Request (mfrc. PICC_REQIDL)
If a card is found
if status == mfrc. MI_OK:
print (“Card detected”)
Get the UID of the card
(status,uid) = mfrc. MFRC522 Anticoll ()
If we have the UID, continue
if status == mfrc. MI_OK:
print (“Card UID: "+ str(map (hex, uid)))
Select the scanned tag
if mfrc. MFRC522 SelectTag(uid) == 0:
print ("MFRC522 SelectTag Failed!”)
if emdloop(uid) < 1 :

isScan = False

elif inCmd == "quit”:
destroy ()
exit (0)

else :

” o ”

print (”\tUnknown command\n”+”\tscan:scan card and dump\n”+”\tquit:exit

program\n”)

def cmdloop(cardID) :
pass
while (True) :

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [N

dis ConmandLine ()
dis CardID(cardID)
inCmd = input ()
cemd = inCmd. split(”)
print (cmd)
if (emd[0] == “read”):
blockAddr = int(cmd[1])
if ((blockAddr<0) or (blockAddr>63)):
print (“Invalid Address!”)
This is the default key for authentication
key = [0xFF, OxFF, OxFF, OxFF, 0xFF, 0xFF]
Authenticate
status = mfrc. MFRC522 Auth(mfrc. PICC AUTHENT1A, blockAddr, key, cardID)
Check if authenticated
if status == mfrc.MI OK:
mfrc. MFRC522_Readstr (blockAddr)
else:
print (“Authentication error”)

return 0

elif emd[0] == "dump”:
This is the default key for authentication
key = [0xFF, OxFF, OxFF, OxFF, 0xFF, 0xFF]
mfrc. MFRC522 Dump Str (key, cardID)

elif cmd[0] == "write”:
blockAddr = int (cmd[1])
if ((blockAddr<0) or (blockAddr>63)):
print (“Invalid Address!”)
data = [0]*16

if (len(cmd)<2) :
data = [0]#16

else:
data = cmd[2][0:17]
data = map (ord, data)
data = list(data)

lenData = len(list(data))

if lenData<16:
data+=[0]*(16-1enData)

This is the default key for authentication
key = [0xFF, 0xFF, OxFF, OxFF, OxFF, 0xFF]
Authenticate
status = mfrc. MFRC522 Auth (mfrc. PICC AUTHENT1A, blockAddr, key, cardID)
Check if authenticated

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

if status == mfrc.MI OK:
print (“Before writing , The data in block %d is: “%(blockAddr))
mfrc. MFRC522 Readstr (blockAddr)
mfrc. MFRC522 Write (blockAddr, data)
print (“After written , The data in block %d is: “%(blockAddr))
mfrc. MFRC522 Readstr (blockAddr)

else:
print (“Authentication error”)

return 0

elif cmd[0] == “clean”:

blockAddr = int (cmd[1])

if ((blockAddr<0) or (blockAddr>63)):
print (“Invalid Address!”)

data = [0]*16

This is the default key for authentication

key = [0xFF, 0xFF, OxFF, OxFF, OxFF, 0xFF]

Authenticate

status = mfrc. MFRC522 Auth(mfrc. PICC AUTHENT1A, blockAddr, key, cardID)

Check if authenticated

if status = mfrc.MI OK:
print ("Before cleaning , The data in block %d is: “%(blockAddr))
mfrc. MFRC522 Readstr (blockAddr)
mfrc. MFRC522 Write (blockAddr, data)
print (“After cleaned , The data in block %d is: “%(blockAddr))
mfrc. MFRC522 Readstr (blockAddr)

else:

print (“Authentication error”)

return 0
elif emd[0] == "halt”:
return 0

else :
print ("Usage:\r\n” “\tread <blockstart>\r\n” “\tdump\r\n” “\thalt\r\n” ”“\tclean
<blockaddr>\r\n” “\twrite <blockaddr> <data>\r\n”)

def destroy():
print ("Ending program”)

if name ==" main ”:
setup ()
try:
loop ()
except KeyboardInterrupt: # Ctrl+C captured, exit
destroy ()

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B ww.freenove.com

4 support@freenove.com

In the code, first create an MFRC522 class object.

- mfre = MFRC522. MFRC522 ()

In the function loop, wait for the command input. If command "scan" is received, the function will begin to
detect whether there is a card close to the sensing area. If a card is detected, the card will be selected and
card UID will be acquired. Then enter the function scan_loop (). If command "quit" or "exit" is received, the

program will exit.

if (inCmd == "scan”):
print “Scanning ...
isScan = True
while isScan:
if cmdloop(uid) < 1 :
isScan = False
elif inCmd == "quit”:
destroy ()
exit (0)

else :

"7

print “\tUnknown command\n”+”\tscan:scan card and dump\n”+”\tquit:exit program\n”

The function cmdloop() will detect command read, write, clean, halt, dump and do the corresponding
processing to each command. The functions of each command and the method have been introduced before.

def cmdloop(cardID) :

pass

while (True) :
dis_ConmandLine ()
dis_CardID(cardID)
inCmd = raw_input ()
cmd = inCmd. split(” 7)
print cmd
if(cmd[0] == "read”):

elif cmd[0] == "dump”:

elif emd[0] == "write”:

elif emd[0] == "clean”:

elif emd[0] == "halt”:

return 0

else :

print “Usage:\r\n” “\tread <blockstart>\r\n” “\tdump\r\n” “\thalt\r\n” “\tclean

<blockaddr>\r\n” “\twrite <blockaddr> <data>\r\n”

The file "MFRC522.py" contains the associated operation method for the MFRC522. You can open the file to

view all the definitions and functions.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Chapter 25 Web loT

In this chapter, we will learn how to use GPIO to control the RPi remotely via a network and how to build a
WeblO service on the RPi.

This concept is known as “loT” or Internet of Things. The development of loT will greatly change our habits
and make our lives more convenient and efficient

Project 25.1 Remote LED

In this project, we need to build a WeblOPi service, and then use the RPi GPIO to control an LED through the
web browser of phone or PC.

Component List

Raspberry Pi (with 40 GPIO) x1 LED x1 Resistor 220Q x1
GPIO Extension Board & Ribbon Cable x1
Breadboard x1

Jumper M/M x2

B 1

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www .freenove.com

< support@freenove.com [EAES

Circuit

Schematic diagram

3.3V 5V
—31SDA1 TXDO }-8~
—214sCL1 RXDO 0.
—LAGPI04 GPIO18}-12~
111GPIO17 GP1023 16
131GPi1027 GP1024 18
2 1GPI022 GPI1025}22
§ B 9{MosI CEQ}24—
211Imiso CE1}26
231scLK SCLO 28~
27.1spao GPIO12}32
v 291GPI05 GPI016}-36
‘/S LEDI j-1—‘(3F’|O(‘3 GPI020 [38
331GPI013 GPI021 40
%\GPIMQ
(GP1026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support,

® o
£

> ®
_I

)

DSI (DISPLAY)

please feel free to contact us via: support@freenove.com

e Pt et ot

Raspberry Pi GPIO Extension Shield

IAAAAAAAAAARAA A AR A AR A AR ARARA DA

support@freenove.com Il

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

Solution from E-Tinkers

Here is a solution fromblog E-Tinkers, author Henry Cheung. For more details, please refer to link below:
https://www.e-tinkers.com/2018/04/how-to-control-raspberry-pi-gpio-via-http-web-server/

1, Make sure you have set python3 as default python. Then run following command in terminal to install
http.server in your Raspberry Pi.
sudo apt-get install http.server

2, Open WeblO.py
cd ~/Freenove_Kit/Code/Python_GPIOZero_Code/25.1.1_WebIO
geany WebIO.py

3, Change the host_name into your Raspberry Pi IP address.
host_name = ’192.168.1.112 # Change this to your Raspberry Pi IP address
Then run the code WeblO.py

WeblO.py - /home/pi - Geany

View Document Project Build Tools Help
& 2 X % © - « 714

WeblOpy

import RPi.GPID as GPIO
import os
from http.server import BaseHTTPReqguestHandler, HTTPServer

'192.168.1.112"' # Change this to your Raspberry P1 IP address

2000 o

%class MyServer(BaseHTTPRequestHandler):

host_name
host_port

"""a special implementation of BaseHTTPRequestHander for reading data from
and control GPIO of a Raspberry P1i

Lo I e < TRCN I Y SO PR T X]

(=

3, Visit http://192.168.1.112:8000/ in web brower on compter under local area networks. Change IP to your
Raspberry Pi IP address.

162.168.1.112:8000 - Chromium

[@ 1921681112800 x| +

&« > C A F%&£ | 192168.1.112:8000 B

‘Welcome to my Raspberry Pi

Current GPU temperature is 53.0'C

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://www.e-tinkers.com/2018/04/how-to-control-raspberry-pi-gpio-via-http-web-server/
http://192.168.1.112:8000/

B www.freenove.com support@freenove.com

WebIlOPi Service Framework

Note: If you have a Raspberry Pi 4B, you may have some trouble. The reason for changing the file in the
configuration process is that the newer generation models of the RPi CPUs are different form the older
ones and you may not be able to access the GPIO Header at the end of this tutorial. A solution to this is
given in an online tutorial by from E-Tinkers blogger Henry Cheung. For more details, please refer to previouse
section.

The following is the key part of this chapter. The installation steps refer to WeblOPi official. And you also can
directly refer to the official installation steps. The latest version (in 2016-6-27) of WeblOPi is 0.7.1. So, you
may encounter some issues in using it. We will explain these issues and provide the solution in the following
installation steps.

Here are the steps to build a WeblOPi:

Installation

1. Get the installation package. You can use the following command to obtain.

wget https://github.com/Freenove/WebIOPi/archive/master.zip —0 WebIOPi.zip
2. Extract the package and generate a folder named "WeblOPi-master". Then enter the folder.
unzip WebIOPi.zip

cd WebIOPi-master/WebIOPi-0.7.1

3. Patch for Raspberry Pi B+, 2B, 3B, 3B+.

patch —-pl -i webiopi-pi2bplus.patch

4. Run setup.sh to start the installation, the process takes a while and you will need to be patient.
sudo ./setup.sh

5. If setup.sh does not have permission to execute, execute the following command

sudo sh ./setup.sh

Run

After the installation is completed, you can use the webiopi command to start running.

$ sudo webiopi [-h] [-c config] [-] log] [-s script] [-d] [port]

Options:
-h, --help Display this help
-c, --config file Load config from file
-1, --log file Log to file
-s, --script file Load script from file

-d, --debug Enable DEBUG
Arguments:
port Port to bind the HTTP Server

Run webiopi with verbose output and the default config file:
sudo webiopi -d -c /etc/webiopi/config
The Port is 8000 in default. Now WeblOPi has been launched. Keep it running.

support@freenove.com Il

217

mailto:support@freenove.com
http://www.freenove.com/
https://github.com/Freenove/WebIOPi/archive/master.zip

X4 support@freenove.com www.freenove.com [l

Access WeblOPi over local network

Under the same network, use a mobile phone or PC browser to open your RPi IP address, and add a port
number like 8000. For example, my personal Raspberry Pi IP address is 192.168.1.109. Then, in the browser, |
then should input: http://192.168.1.109:8000/

Default user is "webiopi” and password is "raspberry”,

Then, enter the main control interface:

WebIOPi Main Menu

GPI0 Header

Control and Dekug the Easpberry P1 GPIO with a display which looks like the physical header.

GPIO List

Contraol and Debuz the Raspberry P1 GPID ordered in a single column.

Serial Monitor

Use the browser to play wilth Serlal interfaces confligured in WebIOFi.

Devices Monitor

Contraol and Debug devices and clrcults wired to vour P1 and confizured in WebIOPI.

Click on GPIO Header to enter the GPIO control interface.

sav[][l sov

izc soa[__| [IEl 5.ov
12cscL[_| [srouno
onewire [JEl] Bl varT
croun [LY varT rx
IR 11 | 12 [EIGRE
I LT 13 | 14 (VN
N TP 15 | 16 [P
3av[] [erro 24
crio 10| [E&J srouno
ALTO| ICTET Il | 22 [P
erio11[_|[]erios [EIL
crouno B[erio7 [
B crios[]) srouno
N TR il | 32 [RP
N ECETTREY 33 | 34 [ENIUNG
N ECTREY 35 | 36 (RIS
N TP 37 | 38 (PN
aroun [E [crio 21

=

Control methods:
® Click/Tap the OUT/IN button to change GPIO direction.
® Click/Tap pins to change the GPIO output state.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
http://192.168.1.109:8000/

B www.freenove.com D4 support@freenove.com [AE

Completed

According to the circuit we build, set GPIO17 to OUT, then click Header11 to control the LED.
You can end the webioPi in the terminal by “Ctr+C".

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

X4 support@freenove.com www.freenove.com [l

What's Next?

THANK YOU for participating in this learning experience! If you have completed all of the projects successfully
you can consider yourself a Raspberry Pi Master.

We have reached the end of this Tutorial. If you find errors, omissions or you have suggestions and/or
questions about the Tutorial or component contents of this Kit, please feel free to contact us:
support@freenove.com

We will make every effort to make changes and correct errors as soon as feasibly possible and publish a
revised version.

If you are interesting in processing, you can study the Processing.pdf in the unzipped folder.

If you want to learn more about Arduino, Raspberry Pi, Smart Cars, Robotics and other interesting products
in science and technology, please continue to visit our website. We will continue to launch fun, cost-effective,
innovative and exciting products.

http://www.freenove.com/

Thank you again for choosing Freenove products.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
http://www.freenove.com/

	Getting Started
	Remove the Chips
	Safety and Precautions
	About Freenove
	Copyright

	Contents
	Preface
	Raspberry Pi
	Installing an Operating System
	Component List
	Required Components

	Optional Components
	Required Accessories for Monitor
	Required Accessories for Remote Desktop

	Raspberry Pi OS
	Automatically Method
	Manually Method
	Write System to Micro SD Card

	Enable ssh and configure WiFi
	Insert SD card

	Getting Started with Raspberry Pi
	Monitor desktop
	Remote desktop & VNC
	MAC OS Remote Desktop
	Windows OS Remote Desktop
	VNC Viewer & VNC
	Enable VNC
	Set Resolution

	Chapter 0 Preparation
	Linux Command
	Shortcut Key

	Install GPIO Zero Python library
	GPIO Zero Python library Installation Steps

	Obtain the Project Code
	Python2 & Python3
	Set Python3 as default python
	Shortcut Key

	Chapter 1 LED
	Project 1.1 Blink
	Component List
	GPIO
	BCM GPIO Numbering
	PHYSICAL Numbering
	GPIO Numbering

	Circuit
	Component knowledge
	LED
	Resistor
	Breadboard
	GPIO Extension Board

	Code
	Python Code 1.1.1 Blink
	Reference

	Freenove Car, Robot and other products for Raspberry Pi

	Chapter 2 Buttons & LEDs
	Project 2.1 Push Button Switch & LED
	Component List
	Component knowledge
	Push Button Switch

	Circuit
	Code
	Python Code 2.1.1 ButtonLED

	Project 2.2 MINI Table Lamp
	Debounce a Push Button Switch
	Code
	Python Code 2.2.1 Tablelamp

	Chapter 3 LED Bar Graph
	Project 3.1 Flowing Water Light
	Component List
	Component knowledge
	Bar Graph LED

	Circuit
	Code
	Python Code 3.1.1 LightWater

	Chapter 4 Analog & PWM
	Project 4.1 Breathing LED
	Component List
	Component Knowledge
	Analog & Digital
	PWM

	Circuit
	Code
	Python Code 4.1.1 BreathingLED

	Chapter 5 RGB LED
	Project 5.1 Multicolored LED
	Component List
	Circuit
	Code
	Python Code 5.1.1 ColorfulLED

	Chapter 6 Buzzer
	Project 6.1 Doorbell
	Component List
	Component knowledge
	Buzzer
	Transistors

	Circuit
	Code
	Python Code 6.1.1 Doorbell

	Project 6.2 Alertor
	Code
	Python Code 6.2.1 Alertor

	(Important) Chapter 7 ADC
	Project 7.1 Read the Voltage of Potentiometer
	Component List
	Circuit knowledge
	ADC
	DAC

	Component knowledge
	Potentiometer
	Rotary potentiometer
	PCF8591
	ADS7830
	I2C communication

	Circuit with ADS7830
	Circuit with PCF8591
	Configure I2C and Install Smbus
	Enable I2C
	Install I2C-Tools
	Install Smbus Module

	Code
	Python Code 7.1.1 ADC
	Reference

	Chapter 8 Potentiometer & LED
	Project 8.1 Soft Light
	Component List
	Circuit with ADS7830
	Circuit with PCF8591
	Code
	Python Code 8.1.1 Softlight

	Chapter 9 Potentiometer & RGBLED
	Project 9.1 Colorful Light
	Component List
	Circuit with ADS7830
	Circuit with PCF8591
	Code
	Python Code 9.1.1 ColorfulSoftlight

	Chapter 10 Photoresistor & LED
	Project 10.1 NightLamp
	Component List
	Photoresistor

	Circuit with ADS7830
	Circuit with PCF8591
	Code
	Python Code 10.1.1 Nightlamp

	Chapter 11 Thermistor
	Project 11.1 Thermometer
	Component List
	Component knowledge
	Thermistor

	Circuit with ADS7830
	Circuit with PCF8591
	Code
	Python Code 11.1.1 Thermometer

	Chapter 12 Joystick
	Project 12.1 Joystick
	Component List
	Component knowledge
	Joystick

	Circuit with ADS7830
	Circuit with PCF8591
	Code
	Python Code 12.1.1 Joystick

	Chapter 13 Motor & Driver
	Project 13.1 Control a DC Motor with a Potentiometer
	Component List
	Component knowledge
	Breadboard Power Module
	DC Motor
	L293D

	Circuit with ADS7830
	Circuit with PCF8591
	Code
	Python Code 13.1.1 Motor

	Chapter 14 Relay & Motor
	Project 14.1.1 Relay & Motor
	Component List
	Component knowledge
	Relay
	Inductor

	Circuit
	Code
	Python Code 14.1.1 Relay

	Chapter 15 Servo
	Project 15.1 Servo Sweep
	Component List
	Component knowledge
	Servo

	Circuit
	Code
	Python Code 15.1.1 Sweep

	Chapter 16 Stepper Motor
	Project 16.1 Stepper Motor
	Component List
	Component knowledge
	Stepper Motor
	ULN2003 Stepper Motor driver

	Circuit
	Code
	Python Code 16.1.1 SteppingMotor

	Chapter 17 74HC595 & Bar Graph LED
	Project 17.1 Flowing Water Light
	Component List
	Component knowledge
	74HC595

	Circuit
	Code
	Python Code 17.1.1 LightWater02

	Chapter 18 74HC595 & 7-Segment Display
	Project 18.1 7-Segment Display
	Component List
	Component knowledge
	7-segment display

	Circuit
	Code
	Python Code 18.1.1 SevenSegmentDisplay

	Project 18.2 4-Digit 7-Segment Display
	Component List
	Component knowledge
	4 Digit 7-Segment Display

	Circuit
	Code
	Python Code 18.2.1 StopWatch

	Chapter 19 74HC595 & LED Matrix
	Project 19.1 LED Matrix
	Component List
	Component knowledge
	LED matrix

	Circuit
	Code
	Python Code 19.1.1 LEDMatrix

	Chapter 20 LCD1602
	Project 20.1 I2C LCD1602
	Component List
	Circuit
	Code
	Python Code 20.1.1 I2CLCD1602

	Chapter 21 Hygrothermograph DHT11
	Project 21.1 Hygrothermograph
	Component List
	Component knowledge
	Circuit
	Code
	Python Code 21.1.1 DHT11

	Chapter 22 Matrix Keypad
	Project 22.1 Matrix Keypad
	Component List
	Component knowledge
	4x4 Matrix Keypad

	Circuit
	Code
	Python Code 22.1.1 MatrixKeypad

	Chapter 23 Ultrasonic Ranging
	Project 23.1 Ultrasonic Ranging
	Component List
	Component Knowledge
	Circuit
	Code
	Python Code 23.1.1 UltrasonicRanging

	Chapter 24 RFID
	Project 24.1 RFID
	Component List
	Component Knowledge
	RFID
	MFRC522
	Mifare1 S50 Card

	Circuit
	Configure SPI
	Enable SPI
	Install Python module SPI-Py

	Code
	Python Code 24.1.1 RFID

	Chapter 25 Web IoT
	Project 25.1 Remote LED
	Component List
	Circuit
	Solution from E-Tinkers
	WebIOPi Service Framework
	Installation
	Run
	Access WebIOPi over local network
	Completed

	What's Next?

