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Abstract— Nowadays, robots are expected to enter in various
application scenarios and interact with unknown and dynami-
cally changing environments. This highlights the need for creat-
ing autonomous robot behaviours to explore such environments,
identify their characteristics and adapt, and build knowledge
for future interactions. To respond to this need, in this paper we
present a novel framework that integrates multiple components
to achieve a context-aware and adaptive interaction between the
robot and uncertain environments. The core of this framework
is a novel self-tuning impedance controller that regulates robot
quasi-static parameters, i.e., stiffness and damping, based on the
robot sensory data and vision. The tuning of the parameters is
achieved only in the direction(s) of interaction or movement, by
distinguishing expected interactions from external disturbances.
A vision module is developed to recognize the environmental
characteristics and to associate them to the previously/newly
identified interaction parameters, with the robot always being
able to adapt to the new changes or unexpected situations.
This enables a faster robot adaptability, starting from better
initial interaction parameters. The framework is evaluated ex-
perimentally in an agricultural task, where the robot effectively
interacts with various deformable environments.

I. INTRODUCTION

In the classical concept of industrial robotics, robots are
deployed in structured environments of manufacturing plants,
operating inside industrial cages. In this context, they are
usually pre-programmed since they are aware of all their
workspace features and properties. These characteristics are
not changing over time, and therefore the required level of
adaptation is trivial. Nowadays, robots are going beyond this
outdated concept, and they are making their way into new
unstructured application fields such as agriculture, disaster
scenarios, small-batch manufacturing, healthcare, construc-
tion, and entertainment. These sectors demand an efficient
interaction of the robots with human beings and unknown
environments. The high uncertainty levels, that character-
ize tasks in such situations, encourage the development
of context-aware and adaptive robotic behaviors able to
distinguish expected interactions from external disturbances.

An intuitive way to develop adaptive robot skills is based
on the observations from human demonstrations [1]–[3].
However, the limit of such approaches is given by their high
dependency on the training data sets quality. Moreover, while
performing complex manipulation tasks, accurate measure-
ments of the contact forces may not be possible through
wearable sensory systems, that is why most learning by
demonstration techniques function on a kinematic level.
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Fig. 1: The algorithm enables robotic arms to explore the material in
the workspace identifying and self-tuning its impedance parameters
only along the directions of interaction in an agricultural setup.

In order to solve this problem, analytical solutions have
focused on the use of impedance control [4]–[6], force
control [7], or hybrid interaction controllers [8], [9] to
address the uncertainty levels. However, in the majority of
cases, the robot programmers choose the control parameters
in line with their experience in carrying out analogous tasks.
By presetting these parameters, the framework cannot adapt
when task conditions change, so the applicability to the
control of complex interactions, and in general the adaptation
capacity to unpredicted events, is very limited [10], [11].

Adaptive learning techniques to address this issue have
also been proposed. In [12], an adaptive impedance con-
troller for upper-limb rehabilitation, based on evolutionary
dynamic fuzzy neural network, is proposed. In this work,
the desired impedance between robot and impaired limb can
be regulated. However, this method lacks of versatility, since
it is limited to a specific task. In [13], empirical constants
need to be set, reducing the flexibility of the framework,
and the desired impedance matrices are assumed to be
diagonal, resulting in limited adaptability in selective Carte-
sian axes. More generic methods, not task-dependent, have
been introduced by reducing impedance control to position
control (through high position loop gains) when there is no
interaction [14] with the aim to minimize the error between
the desired and actual trajectories [15]. Nevertheless, these
systems respond in the same way to all interactions coming
from the external world (see also [16]), as human applied
forces or external disturbances, and their validity has mostly
been proven in simulation environments.

To address these challenges, we propose a novel manipula-
tion framework that integrates various components to achieve
a context-aware and adaptive robot interaction behavior. The
core of our framework is a novel self-tuning impedance
controller, to enable robot adaptation on directions of inter-
action, while setting a compliant profile along all the other
directions. This controller is based on our introductory work



proposed in [17], where preliminary results were shown only
along major Cartesian axes in quasi-static conditions. Here,
the controller is extended to tune the major axis of the
Cartesian stiffness and damping ellipsoids in any arbitrary
direction, which coincide with the direction of interaction.

The novel framework additionally enables a robot to
explore an environment, to identify its characteristics, and
to effectively interact with it. A new visual perception
module is developed to localize different materials in the
robot workspace and associate their newly/previously iden-
tified characteristics to the robot interaction knowledge (i.e.,
impedance control and self-tuning gains). This is similar to
the behavior that can be observed in humans: we constantly
build internal models of the external world, by exploring
and identifying it. When interacting with new or similar
environments, we consider the prior knowledge while keep-
ing open the possibility of adaption, to update our internal
knowledge [18]. Another similarity between our method and
human behavior is given by the default compliant behavior of
the robot. In fact, when no interaction is expected, we tend
to relax our muscles to comply with unexpected external
disturbances (and to minimize energy consumption).

The coordination of the framework components and their
interaction is achieved through an improved Finite State
Machine (FSM), which combines the data received from the
robot sensors with the vision module, to decide where the
robot should operate in its workspace and when to activate
the self-regulating impedance, by distinguishing an expected
interaction from external disturbances.

We perform proof-of-concept experiments for an agri-
cultural setup, demonstrating the potential of the presented
methodology in one of the most promising fields in robotics.
We used two Franka Emika Panda robotic arms: one,
equipped with the Pisa/IIT SoftHand [19] to be able to grasp
two different tools firmly and reliably, and the other one
to cooperate with the first Panda robot to accomplish the
designed task. Fig. 1 illustrates the experimental setup.

II. METHOD

The proposed framework aims to equip robots with an
original set of skills to explore various environments, adapt
to their conditions, build the knowledge, and use it for future
interactions. The concept of self-adaptability is at the core
of this methodology, even after building the knowledge on
task or environments. This implies that if environmental
conditions are subject to variations, the robot is still able
to adapt, starting from a reasonable initial condition.

The required theoretical and technological components
to build such a framework are integrated into five main
modules, as shown in Fig. 2: (1) a Cartesian impedance
controller whose parameters can be changed online, (2) a
self-tuning impedance unit responsible for modifying the
aforementioned parameters when a interaction with the en-
vironment is predicted, (3) a trajectory planner that, given
an initial and a target pose, calculates the spatial points to
be reached by the controller, (4) a visual perception module
that locates the materials’ positions in the robot workspace,

Fig. 2: The presented framework subdivided in modules. Each unit
is a ROS node and data are exchanged via ROS messages on the
depicted ROS topics (dotted lines). The messages published on the
blue topics are generated by the designed software architecture, the
one on the green topic by the Robot and the one on the red topic
by the Camera.

and (5) a Finite State Machine (FSM) that, based on the data
provided by (4), triggers unit (2) and (3).

A. Cartesian impedance controller
Cartesian impedance control techniques provide the ability

to achieve any arbitrary quasi-static behavior at the robot
end-effector [9], [20]. This is however limited to the positive
definiteness and symmetry of the impedance matrices, by
considering robot torque boundaries and the number of
degrees of freedom (� 6).

This control technique relies on torque sensing and actua-
tion, with the vector of robot joint torques ⌧ 2 Rn calculated
as follows:

⌧ = M(q)q̈ +C(q, q̇)q̇ + g(q)+ ⌧ ext, (1)

⌧ ext = J(q)TF c + ⌧ st, (2)

where n is the number of joints, q 2 Rn is the joint angles
vector, J 2 R6⇥n is the robot arm Jacobian matrix, M 2
Rn⇥n is the mass matrix, C 2 Rn⇥n is the Coriolis and
centrifugal matrix, g 2 Rn is the gravity vector and ⌧ ext is
the external torque vector. F c represents the forces vector in
the Cartesian space and ⌧st the second task torques projected
onto the null-space of J .

Forces F c 2 R6 are calculated as follows:

F c = Kc(Xd �Xa) +Dc(Ẋd � Ẋa), (3)

where Kc 2 R6⇥6 and Dc 2 R6⇥6 represent respec-
tively the Cartesian stiffness and damping matrix, Xd and
Xa 2 R6 the Cartesian desired and actual position, Ẋd

and Ẋa 2 R6 their corresponding velocity profiles. The
Cartesian desired position and velocity are given in input
by the Trajectory planner (see Sec. II-C).

B. Self-tuning impedance unit
Robots are expected to work with humans, and within

spaces designed and built for them. Often in these kind
of environments the level of uncertainty is high, where
adaptive tuning of the robot impedance parameters can lead
to better interaction performances. Some preliminary work
in this direction has already been investigated adapting the
impedance parameters based on human observations [10] and
energy tank-based optimization [11], to improve the physical
interaction performance based on the varying task conditions.



Such techniques, however, are not capable of distinguishing
external disturbances from expected interactions, and do
not have the capacity to learn from explorations for future
interaction purposes.

To address these issues, we develop a novel self-tuning
impedance controller that is able to adapt its parameters
when an interaction is expected. The adaptation is limited to
the expected direction(s) of interaction/movement to avoid
unnecessary stiffening/complying of the remaining axes.

To determine when an interaction is to happen, we define
a Boolean value, named Interaction expectancy (Ie), that
results from the Boolean logic rule Ie = Im ^ If . Im is
set by the FSM and it is True only in the states in which an
interaction with the environment is expected. If is given by
the vision module. It is True when the tool attached to the
end-effector is inside the material that has to be manipulated.
The importance of this consideration has been shown in our
preliminary work [17] and it will not be repeated here.

When Ie is False, the Cartesian stiffness matrix Kc is
set to the default compliant behavior, i.e. a diagonal matrix
with all the non-zero coefficients set to kmin. In fact, the
first rule of the proposed self-tuning impedance controller
is to achieve a compliant behaviour in all Cartesian and
redundant axes, unless an interaction is about to occur.
This compliant behaviour can be chosen based on a trade-
off between the position tracking accuracy (affected by the
existence of unmodeled dynamics such as friction) and the
force response, if an unexpected interaction occurs.

The damping matrix Dc is derived from Kc by:

Dc = ⇤⇤DdiagKadj⇤ +Kadj⇤Ddiag⇤⇤, (4)

where Ddiag is the diagonal matrix containing the damping
factor (⇣ = 0.7), Kadj⇤Kadj⇤ = Kc and ⇤⇤⇤⇤ = ⇤, where
⇤ is the desired end-effector mass matrix [21].

On the contrary, if the interaction expectancy value is
True, the Cartesian stiffness matrix Kc and consequently
the damping matrix Dc are subject to changes increasing
(or decreasing) the impedance parameters only along the
direction of the desired movement defined by

�!
P = Xd,t �

Xd,t�1, (which can also be calculated from Ẋd) and keeping
a compliant behavior, set to kmin and dmin = 2⇣

p
kmin

[21], along the other axes. To achieve this, the stiffness and
damping matrices, as being symmetric and positive definite,
can be expressed by A = U⌃V ⇤, which is known as the
Singular Value Decomposition (SVD). Such a decomposition
enables us to project the desired stiffness and damping,
calculated w.r.t. the reference frame of desired motion vector�!
P , onto the reference frame of the robot base. U 2 R3

and V 2 R3 are orthonormal bases, and ⌃ 2 R3 is a
diagonal matrix whose elements are the singular values of
matrix A sorted in decreasing order and representing the
principal axes amplitudes of the resulting geometric ellipsoid.
The columns of matrix U form a set of orthonormal vectors,
which can be regarded as basis vectors. In this work, the
first column of U represents the desired motion vector

�!
P ,

while the second and the third ones are derived from the
first in such a way they form an orthonormal basis. Since the

Hermitian transpose V ⇤ 2 R3, and the resulting matrix A,
that represents the impedance values, is positive definite, we
have that V ⇤ = V T and V = U . Combining the previous
equations, we can derive the stiffness and the damping
matrices:

Kc = U⌃kU
T
, Dc = U⌃dU

T
, (5)

where the diagonal matrix ⌃k and ⌃d coefficients are
respectively the desired stiffness and damping coefficients
along the direction of the vectors composing the U basis.
They are diagonal matrices defined by:

⌃k = diag(kst,kmin,kmin), ⌃d = diag(dst,dmin,dmin),
(6)

where kst is the self-tuning stiffness coefficient to be set
along the motion vector

�!
P and dst its correspondent damp-

ing element. kst is defined at every time t as:

kst,t = kst,t�1 +↵�P�T , (7)

where ↵ is the update parameter, �P = |�X · bP | is the
absolute value of the Cartesian error �X = Xd � Xa

projected onto the direction of the motion vector
�!
P , and

normalized bP , and �T is the control loop sample time.
Note that, kst is subject to changes only when �P is above
a threshold defined as �P t.

A good choice of ↵ is fundamental to reach the desired
impedance in a short time to enhance robot autonomy. This is
because a higher ↵ value is suitable for a fast convergence in
dense material. Nevertheless, choosing a high value for non-
dense material will cause unnecessary stiffening of the robot
that must be avoided. Hence, we performed experiments on
different materials such as soil, sand, rocks, air and water
to obtain an average alpha value, as a trade-off between
fast convergence and stiffening performance. To achieve this,
for every material m, ↵m was calculated and the average
value was defined through the arithmetic mean of all the n

materials taken into account in the analysis.
In certain cases, the impedance parameters need to be

decreased and (7) cannot be applied. For instance, when the
tool attached to the robot end-effector exits the material, even
still being inside the interaction expectancy area. We define
�F ext,t as the variation of the external forces detected at
the robot end-effector at time t w.r.t. the ones measured at
the previous time step, i.e. �F ext,t = F ext,t � F ext,t�1.
In the aforementioned situations, �F ext,t is positive and kst

is defined at every time t as:

kst,t = kst,t�1 � ��F ext,t�T , (8)
where � is given by ↵ scaled by a factor of 10�2, to
implement a similar rate of adaptation as in (7). A pseudo-
code of the proposed method is presented in Alg. 1.

C. Trajectory planner
The third component of the system is responsible for the

motion planning, based on the type of trajectory received by
the FSM (see Sec. II-E). It offers three different trajectory
planners, i.e., point-to-point motion, scooping motion, and
shaking motion, based on the target pose (given by the FSM)
and incorporating a fifth-order polynomial.



D. Visual perception module

The visual perception module is a key element of the
system, providing information to the FSM about the ma-
terials to be manipulated by the robotic arm. This includes
the following two sub-modules: 1) the detection of different
materials based on RGB data and their 3D localization inside
a convex hull polygon based on depth data (materials local-
ization sub-module) and 2) the localization of the highest
(i.e. peak) point inside each material with respect to the
base frame of the robot based also on depth data (peaks
localization sub-module). For achieving these tasks, RGB-
D sensing has been used with a camera (ASUS Xtion PRO)
installed in the scene, facing the materials to be manipulated.
The RGB and depth (point cloud) data are given in an
organized 640 ⇥ 480 grid-based structure at 30Hz, which
allows fast nearest neighborhood computations.

Materials Localization. For the material identification,
we apply a color-based region growing segmentation. In
particular, given a set of colored point cloud data acquired
from the visual sensor, we first transform the cloud in the
robot’s base frame, i.e. the z-axis upwards and the y-axis
facing left. Then, we apply two filters; first a pass-through
filter to remove points below the robot base and second a
crop-box filtering for keeping points only in the working
space of the robot. An important aspect during this process
is to keep the point cloud in its original grid organization
structure, and thus instead of removing points setting them
to NaNs. For the remaining non-filtered points, we apply a
region growing method to classify points of similar color.
The algorithm works in two stages. In the first stage, the
points are sorted according to their curvature and are selected
sequentially as seeds starting from the one with the minimum
curvature value. This is done since growth from a point with
minimum curvature, i.e. the flattest area, reduces the number

Fig. 3: The visual perception module.

of segments. If the neighboring points of a seed have similar
color values they are classified as same material, until there
are no other neighbors. This process continues until no other
seed points remain. In the second stage, clusters whose color
is close to the neighbor cluster or their size is small, are
merged. The result of this process is visualized in Fig. 3. For
each point cloud cluster we generate its convex hull polygon
on the xy-plane. This polygon can be simplified to the 2D
bounding box of the extreme points in each material’s x and
y directions. The vertices of each polygon (i.e., V1, V2, V3, V4

for the rectangle) are stored and passed to the FSM, as
visualized in Fig. 3.

Peaks Localization. Having localized the different mate-
rials, it is straightforward to localize their peak point pi,
for material i, as this with the maximum z-value, while the
center of the material can be defined as the average of the
encapsulating polygon’s vertices.

E. Finite State Machine
To enhance system autonomy by managing the transitions

between the states (see Fig. 2), we introduced a Finite State
Machine. This unit receives the data coming from the Visual
perception module, elaborates them to define the target poses
for the Trajectory planner, and defines if an interaction
with the environment is expected to activate the Self-tuning
impedance unit.

The FSM is mainly divided into four states. The first
one, “Workspace definition”, receives from the “Materials
localization” unit the vertices of the polygons describing the
materials in the robot workspace, and stores them in a data
structure. In this way, the system acquires the knowledge
about the areas where the robot will be moved in the next
phases. The “Exploration” state is designed to identify the
kst parameter for every material. The robot, while holding
a stick-like tool at the end-effector, in a compliant way
reaches the leftmost material, described by the material
polygon vertices given in the previous step. After dunking
into the substance, the interaction expectancy value of the
Self-tuning impedance unit is activated, since a contact with



the environment is predicted, and the robot follows a point-
to-point motion described inside the material area adapting
the impedance parameters as illustrated in Sec. II-B. At the
end of this movement, the resulting kst is stored in a data
structure. Then, the robot pulls out the tool and repeats this
phase for every material, until the impedance parameter of
the rightmost one has been identified.

During the third state, “Materials distribution”, the percep-
tion module comes again into play. The highest point of each
substance is detected by the “Peaks localization” unit, sent
to the FSM and stored in the data structure. These Euclidean
points are used as the starting points of the trajectories
designed in the next and final state, i.e. “Task”, to make
sure that some material will be found in that area. In this
state, the robot holds a scooping tool, like a small shovel or
a scoop. Starting with the default compliance kmin set in
all the Cartesian axes, the robot interacts with the materials
based on the specific task it has to carry out. For every
material, the robot reaches its highest point and scoops some
of it through a scooping motion that goes from the peak point
towards the center of the material polygon. Next, it moves
where it needs to put the material, it pours it in a container
and it starts over with the next scheduled material, based on
the task sequence. This time, when the interaction expectancy
value is activated, the starting kst is set differently for every
material as the value that the framework learned in the
“Exploration” state and stored in the data structure. In this
way, during the “Task” state, the robot does not lag behind
from the beginning and can carry out the task in a precise
manner. In certain situations, it is possible that the material
can change its viscous properties over time, either because
of external circumstances or due to the intrinsic properties
of the substance. For this reason, the impedance parameters
can be subject to changes also in the “Task” state.

III. EXPERIMENTAL SETUP

The software architecture of the robot relies upon the
robotics middleware Robot Operating System (ROS) using
C++ as client library. Every module described in Sec. II
is implemented as a ROS node and data among units are
exchanged via ROS messages on the ROS topics depicted in
Fig. 2 through the publisher/subscriber design pattern.

We conducted experiments using two Franka Emika Panda
robotic arms: one to accomplish all the phases of the pro-
posed method and one to provide the container where the
materials need to be poured. The proposed architecture was
integrated in a customized version of franka ros package,
the ROS integration for Franka Emika research robots. This
package integrates libfranka, Franka Emika’s open source
C++ interface, into ROS Control. The communication be-
tween this interface and the robot is made possible thanks to
the Franka Control Interface (FCI), that provides the current
robot status and enables its direct control with an external
workstation PC connected via Ethernet in real-time at a
communication rate of 1 kHz.

The robot was equipped with an underactuated hand, i.e.,
the Pisa/IIT SoftHand [19]. An ASUS Xtion Pro RGB-D
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Fig. 4: “Exploration” state: when the interaction expectancy (Ie)
Boolean value is True and the Cartesian error along the motion
vector (�P ) is above the threshold of 0.01m, the self-tuning
stiffness kst increases and consequently does the Cartesian stiffness
Kc in the direction of movement.

sensor was attached on a pole in front of the robot arm and
calibrated with respect to the robot base frame.

IV. EXPERIMENTS

To validate the proposed method we carried out exper-
iments in an agricultural robotics setup. Three different
materials were placed in a container between the robot and
the camera pole: soil, seeds and expanded clay. The choice of
these materials was motivated both by their extensive use in
agriculture and by the great difference among their viscoelas-
tic properties. This allowed us to show different behaviors in
the impedance parameters self-tuning and therefore to point
out the validity of the method.

To illustrate the experiments, we follow the FSM flow. In
the “Workspace definition” state, the FSM receives the 12
Euclidean points delimiting the areas of the three materials
from the “Materials localization” unit of the perception
module. Next, in the “Exploration” state, the robot holds a
metal stick 27cm long. Based on the method explained at the
end of Sec. II.B, ↵ was set to 20000, while kmin was set to
500N/m, a value that guarantees a good compliance in case
of unexpected collisions. In this state the robotic arm reaches
the leftmost material, composed by seeds (mat. 1), and dunks
the metal stick into it preparing for the exploration. Since an
interaction is expected, at t = 1.5s the interaction expectancy
value is triggered, as shown in the fourth plot of Fig. 4, and
the Self-tuning impedance unit is activated. The robot then
moves along the x axis for 18cm with the tool dunked inside
the material. As depicted in the first plot of Fig. 4, �P goes
beyond the threshold �P t set to 1cm, and therefore kst

increases following (7). Consequently, the Cartesian stiffness
along the direction of the movement, that in this case it is
given entirely by x, is adapted. In this way, the Cartesian
error along the motion vector, i.e. �P , decreases below
the threshold and the value reached by kst (1100N/m) is
stored in the data structure. Next, the robot pulls out the
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state, some water was added to the soil between the two states.

tool from the first material, and completes the exploration of
the material in the center and the rightmost one in the same
manner. The kst values of the soil (mat. 2) and the expanded
clay (mat. 3) are tuned, respectively, to 1650 and 1330N/m

as shown during t = 10� 30s in Fig. 4.
Once this learning step is completed, the robot goes back

to its initial configuration, and the “Material distribution”
state takes place. The perception module “Peaks localization”
unit detects the highest point for every material, that are sent
to the FSM, and stored in the data structure.

During the “Task” state, the robot hand grasps a scoop.
This state is subdivided into four substates: the robot scoops,
transports and pours in a plant plot, provided by another
robot, some soil (a), some plant seeds (b), some other soil
(c) and in the end some expanded clay (d). The four substates
plots are illustrated in Fig. 5. In the upper figures, it is
highlighted how the stiffness value kst, depicted by means
of red arrows, changes along the motion vector bP inside the
interaction expectancy area, represented by the three material
containers. Longer and more vivid arrows stand for higher
stiffness values, while shorter and faint arrows stand for
lower stiffness values.

Outside the containers, kst is always set to kmin, i.e.
500N/m. As soon as the tool enters the area where an
interaction is expected, kst assumes the value corresponding
to the material, as shown by the arrows length and intensity
change. If �P remains below the threshold, kst does not
vary its value until no forces are detected, i.e. when the
material scooping is over although the scoop is still inside the
container. When this happens, kst is reduced according to
(8), as depicted in the last part of the trajectories performed

inside the container; to avoid unnecessary changes due to
negligible variations, we designed a moving average window
to calculate �F ext. Lastly, the robot exits the interaction
expectancy area, and kst is restored to kmin.

Between the “Exploration” and the “Task” state, we put
some water in the soil to change its viscoelastic properties. In
“Task” (a), when the scoop enters the soil, �P goes beyond
the threshold (t = 6.3s), so the Self-tuning impedance unit is
activated again. The soil kst value passes from 1650N/m to
1750N/m, as pointed out by the slight difference between
the first and the other arrows inside the leftmost container.

The green triangles represent the highest point of each
substance provided by the “Peaks localization” perception
module. Note that, the axes of these figures are oriented
to analyze the task from a lateral view to foster a deeper
understanding. The direction of the motion is specified in
the plot related to the three components of the normalized
motion vector bP .

V. CONCLUSION AND DISCUSSION

In this work, we proposed a novel framework to enhance
robot adaptability in unstructured and unknown environ-
ments. The framework was based on a self-tuning impedance
controller, able to regulate the impedance parameters only on
the direction of the motion vector, and activated just when
an interaction with the external environment was predicted.
It additionally included a visual perception module that
improved the situation-awareness of the robot, localizing the
surrounding materials and their peak points. We experimen-
tally validated the presented framework in an agricultural
task, demonstrating its high potential in online adaptation to
interaction requirements of various materials.
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and A. Albu-Schäffer, “Whole-body impedance control of wheeled
mobile manipulators,” Aut. Robots, vol. 40, no. 3, pp. 505–517, 2016.

[5] J. Lee, A. Ajoudani, E. M. Hoffman, A. Rocchi, A. Settimi, M. Ferrati,
A. Bicchi, N. G. Tsagarakis, and D. G. Caldwell, “Upper-body
impedance control with variable stiffness for a door opening task,” in
Humanoid Robots (Humanoids), 2014 14th IEEE-RAS International
Conference on. IEEE, 2014, pp. 713–719.

[6] A. Ajoudani, J. Lee, A. Rocchi, M. Ferrati, E. M. Hoffman, A. Settimi,
D. G. Caldwell, A. Bicchi, and N. G. Tsagarakis, “A manipulation
framework for compliant humanoid coman: Application to a valve
turning task,” in 14th IEEE-RAS International Conference on Hu-
manoid Robots (Humanoids). IEEE, 2014, pp. 664–670.

[7] L. Righetti, M. Kalakrishnan, P. Pastor, J. Binney, J. Kelly, R. C.
Voorhies, G. S. Sukhatme, and S. Schaal, “An autonomous manipu-
lation system based on force control and optimization,” Aut. Robots,
vol. 36, no. 1-2, pp. 11–30, 2014.

[8] R. J. Anderson and M. W. Spong, “Hybrid impedance control of
robotic manipulators,” IEEE Journal on Robotics and Automation,
vol. 4, no. 5, pp. 549–556, 1988.

[9] C. Schindlbeck and S. Haddadin, “Unified passivity-based cartesian
force/impedance control for rigid and flexible joint robots via task-
energy tanks,” in IEEE International Conference on Robotics and
Automation (ICRA), 2015, pp. 440–447.

[10] C. Yang, G. Ganesh, S. Haddadin, S. Parusel, A. Albu-Schaeffer, and
E. Burdet, “Human-like adaptation of force and impedance in stable
and unstable interactions,” IEEE Transactions on Robotics, vol. 27,
no. 5, pp. 918–930, 2011.

[11] F. Ferraguti, C. Secchi, and C. Fantuzzi, “A tank-based approach
to impedance control with variable stiffness,” in IEEE Int. Conf. on
Robotics and Automation (ICRA), 2013, pp. 4948–4953.

[12] G. Xu, A. Song, and H. Li, “Adaptive impedance control for upper-
limb rehabilitation robot using evolutionary dynamic recurrent fuzzy
neural network,” Journal of Intelligent & Robotic Systems, vol. 62, no.
3-4, pp. 501–525, 2011.

[13] E. Gribovskaya, A. Kheddar, and A. Billard, “Motion learning and
adaptive impedance for robot control during physical interaction with
humans,” in Robotics and Automation (ICRA), 2011 IEEE Interna-
tional Conference on. IEEE, 2011, pp. 4326–4332.

[14] Y. Li, S. Sam Ge, and C. Yang, “Learning impedance control for phys-
ical robot–environment interaction,” International Journal of Control,
vol. 85, no. 2, pp. 182–193, 2012.

[15] W. He and Y. Dong, “Adaptive fuzzy neural network control for a
constrained robot using impedance learning,” IEEE Trans. on neural
networks and learning systems, vol. 29, no. 4, pp. 1174–1186, 2018.

[16] B. Nemec, N. Likar, A. Gams, and A. Ude, “Human robot cooperation
with compliance adaptation along the motion trajectory,” Autonomous
robots, vol. 42, no. 5, pp. 1023–1035, 2018.

[17] P. Balatti, D. Kanoulas, G. F. Rigano, L. Muratore, N. G. Tsagarakis,
and A. Ajoudani, “A self-tuning impedance controller for autonomous
robotic manipulation,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 5885–5891.

[18] M. Kawato, “Internal models for motor control and trajectory plan-
ning,” Current opinion in neurobiology, vol. 9, no. 6, pp. 718–727,
1999.

[19] A. Ajoudani, S. B. Godfrey, M. Bianchi, M. G. Catalano, G. Grioli,
N. Tsagarakis, and A. Bicchi, “Exploring teleimpedance and tactile
feedback for intuitive control of the pisa/iit softhand,” IEEE transac-
tions on haptics, vol. 7, no. 2, pp. 203–215, 2014.

[20] A. Ajoudani, N. G. Tsagarakis, and A. Bicchi, “Choosing poses for
force and stiffness control,” IEEE Transactions on Robotics, vol. 33,
no. 6, pp. 1483–1490, 2017.

[21] A. Albu-Schaffer, C. Ott, U. Frese, and G. Hirzinger, “Cartesian
impedance control of redundant robots: recent results with the dlr-
light-weight-arms,” in IEEE International Conference on Robotics and
Automation (ICRA), 2003, pp. 3704–3709.

View publication statsView publication stats

https://www.researchgate.net/publication/332188421

