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Abstract—In this paper, we present the integration of multiple
components of a full-size humanoid robot system, including
control, planning, and perception methods for manipulation
tasks. In particular, we introduce a set of modules based on visual
object localization, whole-body control, and real-time compliant
stabilization on the robot. The introduced methodologies are
demonstrated on a box lifting task, performed by our newly
developed humanoid bipedal robot COMAN+.

I. INTRODUCTION

In this paper, we integrate the preliminary work in [1] with
visual perception and planning in order to autonomously detect
and pick up a box from the ground, using the COMAN+
robot. Few works in the past have dealt with this challenging
problem, as e.g. [2], [3], [4].

COMAN+ is an 1.6 meters tall, 67 kg, 29 degrees of
freedom humanoid robot, which has been recently developed
at Istituto Italiano di Tecnologia (IIT), targeting research
in collaborative and developmental robotics. The robot is
actuated by high power, torque controlled series elastic drives.
This endows COMAN+ with high physical capacity, enabling
the robot to manipulate high payloads (the payload capacity of
each arm is 10 kg). This integration work uses software tools
and libraries that were developed over the past few years in
the Humanoids and Human-Center Mechatronics team at the
Istituto Italiano di Tecnologia (IIT).

II. CONTROL, PLANNING AND PERCEPTION
ARCHITECTURE

Figure 1 shows a general block scheme of the control and
perception architecture running in the COMAN+ robot. It is
possible to recognize two main sub-systems: the planning and
perception sub-system (in red) and the control sub-system (in
green).

The control sub-system is based on XBotCore [5] and runs
in a dedicated real-time PC running a Xenomai micro-kernel.
This subsystem is constituted by one non real-time thread,
named CommunicationHandler and one real-time thread,
named PluginHandler which communicates each other using
xddp sockets.

A. The CartesI/O framework

In order to execute the actions that are planned by our
perception-aware state machine, we developed a whole-body
inverse kinematics engine called CartesI/O. Our engine is
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Fig. 1: Software architecture proposed in this work. The red color
marks the planning subsystem, while the green color marks the
motion control subsystem.

based on a client-server model: the server part is in charge
of actually solving the inverse kinematics problem, whereas
the client exposes a full ROS API in order to enable all
components of a distributed control system to monitor the
solver state, as well as to send appropriate references to it.
More in detail, the CartesI/O client provides the ability to
specify Cartesian references as both online-generated trajecto-
ries by continuously publishing to an appropriate ROS topic,
as well as point-to-point motions (possibly via user-specified
waypoints), which are commanded through ROS actions. On
the server side, besides the actual IK solution, additional
operations are carried out, as for instance the automatic pre-
processing of all Cartesian references in order to enforce
velocity and acceleration limits via the Reflexxes library, and
point-to-point trajectory interpolation. The client and server
components can run inside different processes or threads; for
the present work, we choose to run our client component on
our CommunicationHandler non-RT thread, whereas the server
side is run inside a XBot RT Plugin. The server component
solves the required control problem by using the OpenSoT
framework [6], a RT-safe multi-priority whole-body IK engine.

In order to achieve compliant disturbance rejection during
the execution of our box-picking task, we employ a compliant
stabilizer [7] module; by running it inside the server RT thread,
we ensure that the whole feedback loop is executed with low
jitter, and deterministic loop frequency, which is important



given that any delay contributes to weaken the closed loop
stability.

B. Box localization

Perception is important in automatizing robotic tasks in
uncertain environments, for a more reliable and faster per-
formance. We use an ASUS Xtion PRO RGB-D sensor kine-
matically calibrated on the robot’s body, providing 640× 480
grid-based RGB and depth data at 30 Hz. This sub-module
implemented in ROS, localizes in real-time the box on the floor
in the following way. The floor is localized as the dominant
plane in the scene [8], using the RANdom SAmple Consensus
(RANSAC) algorithm [9]. For the remaining points, we run
RANSAC again and assume that they represent the box’s upper
surface in front of the robot. The convex hull of this surface
point cloud, defines the box size in the lateral direction. For
localizing the bi-manual grasping point of the box, we localize
its center as the mean point between the floor and the center
of the box’s upper surface center. This point and the box’s
lateral size, defines the symmetric box grasping position. The
extracted point and the box’s size are published into the system
as stamped ROS messages in real-time, but used only before
the grasping process in an open-loop fashion.

C. Reference generation

In order to script the robot behavior for the box-picking
task, we coded a SMACH-based [10] state machine that runs
inside a Python script. Notice that, thanks to the integration
between XBotCore dual thread architecture and the CartesI/O
client-server organization, we are able to easily command the
robot in the Cartesian space from a remotely-executed script
despite the fact that the CartesI/O server is running inside a
hard-RT thread.

III. EXPERIMENTS AND CONCLUSIONS

To validate the outcome of our integration work, we
have performed experiments on the real COMAN+ plat-
form, which are depicted in Figure 2 and also available at
https://youtu.be/lEkAKmkR9Rg. First, disturbance rejection
capabilities are tested with pushes exerted by the human opera-
tor. Then, the perception module starts; it correctly recognizes
the lab floor, as well as the box as soon as it is pushed inside
the sensor field-of-view. Finally, we run our SMACH state
machine, which commands a successful grasp-and-lift motion
to the robot.

We further plan to perform similar task with the environ-
ment changing dynamically and the robot performing loco-
motion before and after the lifting task, with heavier objects
and the robot being disturbed during the task. The whole
framework will be used to assist humans in collaborative and
developmental tasks.
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Fig. 2: Snapshots from an experiment with the real CO-
MAN+ hardware.
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