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Abstract— Complex interactions with unstructured environ-
ments require the application of appropriate restoring forces
in response to the imposed displacements. Impedance control
techniques provide effective solutions to achieve this, however,
their quasi-static performance is highly dependent on the choice
of parameters, i.e. stiffness and damping. In most cases, such
parameters are previously selected by robot programmers
to achieve a desired response, which limits the adaptation
capability of robots to varying task conditions. To improve
the generality of interaction planning through task-dependent
regulation of the parameters, this paper introduces a novel
self-regulating impedance controller. The regulation of the
parameters is achieved based on the robot’s local sensory data,
and on an interaction expectancy value. This value combines
the interaction values from the robot state machine and visual
feedback, to authorize the autonomous tuning of the impedance
parameters in selective Cartesian axes. The effectiveness of
the proposed method is validated experimentally in a debris
removal task.

I. INTRODUCTION

During the past decades, both natural catastrophes caused
by the Earth’s natural processes (e.g., earthquakes, tsunami
and their consequences) and man-made disasters (e.g. Cher-
nobyl nuclear accident) have highlighted the need for ef-
fective and efficient robotic systems that can be quickly
deployable after the disaster, to assist in tasks too hazardous
for humans to perform.

To prevent and respond to such disasters, some common
manipulation tasks have been studied during the past years.
The DARPA Robotics Challenge (DRC) [1] sought to ad-
dress this problem by investigating tasks such as removing
debris blocking an entryway, using a cutting tool, and turning
a valve near a leaking pipe. The presence of high uncertainty
levels in such environments and tasks urges the development
of autonomous robotic behaviors that are triggered by the
rich local sensory systems. Such systems must be capable of
distinguishing expected interactions from disturbances, to be
able to react accordingly and appropriately.

A set of autonomous skills can be developed based on the
observations from human demonstrations [2]–[5], however,
their performance is highly dependent on the richness of
the training data sets. In addition, current wearable sensory
systems still do not provide effective solutions for the mea-
surement of contact forces while performing complex ma-
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nipulation tasks, that is why most learning by demonstration
techniques function on a kinematic level.

The analytical solutions to this problem have focused
on the use of impedance control [6]–[8], force control [9],
or hybrid interaction controllers [10], [11] to address the
uncertainty levels. Nevertheless, in most cases, the choices
of control parameters are carried out by the robot program-
mers, based on the knowledge or experience from executing
similar tasks. Such presumptions will limit the applicability
of interaction controllers with fixed parameters to varying
tasks or task conditions (e.g. different valve friction, debris
weight, etc.), reducing the flexibility and adaptation capacity
of robots to unexpected events [12], [13]. Several adaptive
learning techniques have been proposed to address this issue
(e.g. see [14], [15]), however, the underlying policies for the
modulation of contact forces were limited to a certain class
of tasks, and responded similarly to all interactions coming
from the external world (e.g., external disturbances, human
applied forces, etc.).

To address these challenges, we propose a novel manipu-
lation framework that enables autonomous regulation of the
contact forces in selective Cartesian axes through self-tuning
of the impedance parameters in quasi-static conditions. The
tuning of the parameters in those axes are performed based
on the local sensory feedback, that includes interaction
forces, robot desired and measured trajectories, and vision.

With the aim to improve the situation-awareness of the
robot to distinguish expected interactions from external dis-
turbances, an interaction expectancy value is generated. The
computation of this value is based on two Boolean values.
The first is generated from an autonomous Finite State
Machine (FSM) that reveals if an external interaction can
occur in certain phases of robot movements or manipulation.
The second value is generated by the vision system, by fitting
an interaction field to the object or environment to distinguish
the areas in the external world that expect interactions with
robot end-effectors. A logical AND operator of the two val-
ues creates the interaction expectancy value. It is important
to note here that, the second value created by the interaction
field will generate True values when an object is grasped
and being moved in the space by the robot hand (since
the interaction field will move with the object). However,
if no other external interaction is expected, the FSM will
return False values. Like this, in case of accidental collisions,
the self-tuning impedance will not react in those Cartesian
directions, and remain to be compliant.

We perform proof-of-concept experiments for a debris



removal task using a KUKA LBR IIWA 14 robot to demon-
strate the potential of the proposed methodology. Starting
from a compliant end-effector, the robot will adjust the
Cartesian stiffness and damping in directions which are
necessary to perform the task, e.g. in the direction of gravity
due to the deviations from the desired trajectory caused by
the payload. Other unexpected disturbances will not lead
to the tuning of the impedance parameters, and will be
responded by a soft contact relying on the robot Cartesian
and nullspace compliant behavior.

II. METHOD
The proposed framework can be subdivided into four main

units: (1) a self-tuning Cartesian impedance controller that
enables the tuning of the stiffness and damping parameters in
certain Cartesian axes, (2) an object localization method that
provides the exact pose from where the object needs to be
grasped, (3) an interaction expectancy module that provides
the possibility of an expected physical interaction between
the robot and the object/environment, and (4) a sensor fusion
of force and visual localization from step (2) to effectively
execute the manipulation task. The aforementioned parts are
regulated by means of a Finite State Machine (FSM) in
charge of assembling all the components of the system.

A. Self-tuning Cartesian impedance controller

The ability to autonomously tune impedance parameters of
the robot interaction controller can help to address varying
uncertainty levels of a manipulation task, and contribute to
improved performances. Preliminary work in this direction
investigated the adaptation of impedance parameters based
on human observations [12] and energy tank-based optimiza-
tion [13], to improve the physical interaction performance
based on the varying task conditions.

However, one of the biggest challenges in this context
is to make such techniques work properly in unstructured
environments, by distinguishing expected interactions from
external disturbances. This consideration will enable adap-
tation of the impedance parameters only to the interactions
that are expected, while achieving a compliant behavior in
response to the external disturbances to avoid the generation
of unnecessary high interaction forces (e.g. collisions with
the environment).

To this end, in this paper, a novel self-tuning impedance
controller is developed that functions based on an interaction
expectancy value. This value is calculated from the FSM and
visual feedback interaction values (see sections below), to
enable autonomous tuning of impedance parameters when an
external interaction is expected. Furthermore, the tuning of
the parameters are achieved in selective axes of the Cartesian
space based on end-point sensory data, to avoid unneces-
sary stiffening/complying of the remaining axes. The block
scheme of the proposed self-tuning impedance controller is
provided in Fig. 1.

The robot is torque controlled and the vector of robot joint
torques τ ∈ Rn is generated as follows:

τ =M(q)q̈ +C(q, q̇)q̇ + g(q) + τ ext (1)

Fig. 1: Block scheme of the proposed self-tuning impedance con-
troller.

τ ext = J(q)
T
F c + τ st (2)

where n is the number of joints, q ∈ Rn is the joint angles
vector, J ∈ R6×n is the robot arm Jacobian matrix, M ∈
Rn×n is the mass matrix, C ∈ Rn×n is the Coriolis and
centrifugal matrix, g ∈ Rn is the gravity vector and τ ext is
the external torque vector. F c represents the forces vector in
the Cartesian space and τst the second task torques projected
onto the null-space of J .

Forces F c ∈ R6 are calculated as follows:

F c =Kc(Xd −Xa) +Dc(Ẋd − Ẋa) (3)

where Kc ∈ R6×6 and Dc ∈ R6×6 represent respec-
tively the Cartesian stiffness and damping matrix, Xd and
Xa ∈ R6 the Cartesian desired and actual position, Ẋd

and Ẋd ∈ R6 their corresponding velocity profiles. The
Cartesian desired position and velocity are generated with
a fifth-order polynomial trajectory.

The first rule of the proposed robot self-tuning impedance
controller is to achieve compliant Cartesian and nullspace
behaviors. To this end, the default Kc and Kn matrices
are chosen to achieve a good tracking performance in the
presence of joint friction, while providing a compliant re-
sponse in case of accidental collisions. Kn is a constant
nullspace stiffness matrix used in the secondary task of
the self-tuning Cartesian impedance controller. A stiffness-
consistent nullspace projection [16] was used to calculate
τ st

1.
When an expected interaction with the environment is

detected by the interaction expectancy module (see Sec.
II-C), the Cartesian stiffness matrix Kc and consequently

1Note that, in this work, self-tuning of the impedance parameters are only
carried out in selective Cartesian axes, and the nullspace stiffness is kept
as default. This is due to the assumption that most manipulation tasks are
executed at robot endpoint.



the damping matrix Dc are subject to changes as follows,
depending on ∆F ext,t, i.e. the variation of the external
forces detected by the robot at time t w.r.t. the ones measured
in the previous control loop

∆F ext,t = F ext,t − F ext,t−1. (4)

First case: if ∆F ext,t < 0, the stiffness needs to be
increased on a certain Cartesian axis to ensure the movement
is completed in that particular direction in a precise manner.
For instance, when a heavy object is grasped, the loading
effect will introduce deviations from the desired trajectory.
In this scenario the stiffness is regulated following equations:

∆Xt = |Xd −Xa| (5)

Kc,t =Kc,t−1 +α∆Xt∆T (6)

subject to − fmax < F ext,t < fmax

subject to Kc,min <Kc,t <Kc,max

where α is a coefficient to be set, ∆T the control loop
sample time, fmax the maximum allowed interaction force
level, Kc,min the minimum Cartesian stiffness value and
Kc,max the maximum Cartesian stiffness value.

Second case: if ∆F ext,t > 0, the stiffness needs to be
decreased on a certain Cartesian axis, switching back to
compliant mode, e.g., when an object is laid down on the
ground before being released, the robot needs to adapt to
the ground forces to avoid the generation of high interaction
forces between the object and the environment. The stiffness
parameters are decreased according to the following law:

Kc,t =Kc,t−1 − β∆F ext,t∆T (7)

subject to ∆Xt < δxmax

subject to Kc,min <Kc,t <Kc,max

where β is a coefficient to be set, ∆F ext,t is defined as in (4)
and δxmax represents the maximum allowed displacement
error from the desired trajectory, i.e. ∆Xt.

The damping matrix D is tuned online based on the
resulting Kc,t

D = Λ∗DdiagKadj∗ +Kadj∗DdiagΛ∗, (8)

where Ddiag is the diagonal matrix containing the damping
factors (ζ = 0.7), Kadj∗Kadj∗ = Kc and Λ∗Λ∗ = Λ,
where Λ is the desired end-effector mass matrix [17].

B. Object Localization and Grasping Pose Extraction

The second module involves the visual-based method of
localizing the object to be manipulated in the environment
and extracting its grasping pose frame, noted as (x̂g ,ŷg ,ẑg).
In this paper, we will focus on objects that are stick-like
and lie in front of a planar segment, such as a door or wall.
As an input to this method, we will consider point cloud
data coming from an RGB-D sensor at 30Hz. Given the
input point cloud, we first segment the dominant plane using
the RANdom SAmple Consensus (RANSAC) method [18].

Fig. 2: (i-a) The point cloud of two debris on a door, with the door
normal vector n̂w (cyan), the grasp axes of the right-most debris
(x̂g , ŷg , ẑg), and the interaction field cylinder around each debris
in red. (i-b) The RGB image of the scene. (i-c) A top-view of the
point cloud with the grasp axes and the interaction field cylinder
with radius rg . Similarly, for one debris in (ii).

In this way, we extract the normal of the plane n̂w (in
cyan color in Fig. 2) and we segment all the points above
the plane to different Euclidean clusters [19], [20]. Each
point cloud cluster represents a potentially different object
in the scene. For each one of the clusters, we fit a 3D
line using again RANSAC. Those that respect some length
constraints, i.e., longer but narrower than the hand’s palm
size, are considered to be stick-like objects, potentially good
for grasping. In this way, we extract the fitted 3D line’s axis
as the grasping frame’s x̂g-axis (in red color in Fig. 2). We
construct the remaining axes of the grasping frame in the
following way. The ŷg-axis is the cross product between the
plane normal vector n̂w and the x̂g-axis, i.e., ŷg = n̂w× x̂g .
Finally, the ẑg-axis is the cross product of the other two, i.e.,
ẑg = x̂g×ŷg . In this way, we generate the grasping frame to
be matched to the hand frame during grasping, in a way that
the closing fingers can encapsulate the object and the hand is
perpendicular to the flat surface (wall/door), so that we avoid
as much as possible early collisions with the object during
the approaching phase. The position of the grasping frame
has a fixed height with respect to the robot base frame and is
at the edge of the object. We pick the right edges for right-



handed grasps and left edges, otherwise. To do that, for each
object point cloud cluster, we extract the point cloud nearest
neighborhood at the fixed height from the robot’s base and
we select as grasping position the right/left-most point.

Another important information that can be extracted from
vision is a cylinder around the object main axis, that repre-
sents the interaction field between the hand and the object.
This information serves as input to the interaction expectancy
module (Sec. II-C). The cylinder is extracted along the fitted
3D line axis for each object, with radius rg that equals the
maximum size of the hand fingers (appears as red cylinder in
Fig. 2) and its length is coming from the extreme 3D points
of the object point cloud clusters that were extracted after
the plane segmentation phase.

C. Interaction Expectancy Module

The third unit includes a method responsible of deciding
if a physical interaction between the robot and the ob-
ject/environment is to happen or not. There are some areas
in which this interaction is expected and so the self-tuning
Cartesian impedance module has to be activated and some
other areas in which no interaction is predicted and the robot
should keep the same or default level of compliance. Two
Boolean values are used to decide if an external interaction
is expected and if the interaction expectancy value has to
be triggered. The first one, the FSM interaction value, is
given by the FSM and is activated only in those states in
which an interaction is expected, e.g., while picking an object
and placing it down on the ground. The second one, the
interaction field value, is given by the vision module and it
is True if the end-effector is located inside the interaction
field, or False, otherwise. These two values are correlated
by the following Boolean logic rule:

Ie = Im ∧ If (9)

where Ie is the interaction expectancy value, Im is the FSM
interaction value, If is the interaction fields value and ∧ is
the logical AND operator.

D. Sensor Fusion of Force and Visual Localization

In disaster scenarios, since the environment is uncertain,
the manipulation workspace may not be always bright and
clear, for instance because of illuminations, shadows, or even
fire smoke. Therefore, a unit to assist the vision module and
to enhance the robustness of the object pose estimation has
been developed. After reaching the pose estimated by the per-
ception module, the external forces are sensed and translated
from the joint to the Cartesian space as in (10) where J+T

represents the transpose of Jacobian pseudoinverse matrix
and τq,ext the joint external torques vector. If ∆F ext 6= 0
on axis i, a contact with the object has been established
on that axis and there is no need of a further movement in
that direction. On the contrary, if ∆F ext = 0 on axis i, no
contact is detected and a movement forward on that axis is
performed until ∆F ext 6= 0, ensuring that the end-effector
is ready to grasp the object.

Fig. 3: The system is controlled by a Finite State Machine. Each
state represents a motion primitive.

Fc,ext = J
+T · τq,ext (10)

Performing end-effector movements against the object to
sense the mentioned forces could lead to an accidental fall of
the object, if it is placed in a precarious position, but since
these adjustments are made with a very high compliance,
the end-effector will not displace the object from its original
pose. Note that the fusion of data coming from visual
localization and external forces sensing is done sequentially.

E. Finite State Machine

The described units are linked together by means of
a Finite State Machine, depicted in Fig. 3, that allows
the framework to be completely autonomous. Each state
represents a motion primitive while the outgoing arrows
represent the possible feedback that can be given in response
to the performed subtask outcome. Solid arrows stand for
successful actions while dashed arrows are directed to safe
states in case a fail in the task occurs.

The FSM initial state is identified by the “Homing” state,
that is also the safe exit state for the primitives involving arm
movements. In this recovery state, the robot end-effector is
in the center of the workspace. The natural control flow leads
firstly to a “Reach” state, where the end-effector approaches
the object depending on the position and the orientation
provided by the object localization module. During this
phase, the robot enters in the interaction field and the self-
tuning impedance controller is enabled.

To double-check if the pose given by the vision object lo-
calization unit is accurate, the FSM switches to the “Adjust”
state where the sensor fusion unit can move the end-effector
forward on the axes where no forces are detected. Once the
end-effector palm makes contact with the object surface, the
“Grasp” primitive closes the robot hand and allows the object
grasping. Consequently, the object has to be taken away in a
safe space and released. To accomplish this goal, four other
primitives were designed. In the first place, the object is
brought in front of the robot (“Pick” state) and then moved
away at its side (“Move Away” state). Before being released
in the “Ungrasp” state, we want to make sure that the object
falls down in the space where it does not hinder future robot
operations. Therefore, in the “Place Down” state, the object



upper-end is first rotated in a way that it points away from
the robot and the intended future operational space, and then
placed down until it makes contact with the ground. In this
state, the self-tuning impedance controller is enabled again,
so that when the object makes contact with the ground, the
robot becomes compliant since ∆F ext,t will be positive.

III. ROBOT INTERFACES

The software architecture of the robot relies upon XBot-
Core [21] (Cross-Bot-Core) – a recently developed open-
source2 and light-weight Real-Time (RT) platform for
robotics, designed to be both an RT robot control framework
and a software middleware. XBotCore satisfies RT require-
ments, ensuring 1 kHz hard RT control loop even in complex
multi-DOF systems, moreover it provides a simple and easy-
to-use middleware Application Programming Interface (API),
for both RT and non-RT external control frameworks. This
API is completely flexible with respect to the framework a
user wants to utilize. It is also possible to reuse the code
written using XBotCore API with different robots (cross-
robot feature) thanks to the Robot Hardware Abstraction
Layer (R-HAL) introduced in [22].

The R-HAL permits to seamlessly program and control
any robotic platform providing a relatively uniform abstrac-
tion that hides the specifics of the underlying hardware.
Consequently, this allows the robot software developers to
easily transfer/reuse their code on different robots. All the R-
HAL implementations are built as a shared library loaded at
runtime according to what specified in a configuration file. In
particular, the R-HAL implementation for the KUKA IIWA

2https://github.com/ADVRHumanoids/XBotCore

has been provided relying on the FRI (Fast Robot Interface)
to transfer data between the robot controller and the external
computer. It is important to mention that the control was
done in non-RT mode because the FRI API communication
provided by KUKA is intrinsically not RT safe. However,
a porting of the KUKA API to the RT domain could be
possible with no particular issues ensuring always no changes
in the XBotCore plugin developed. The control behavior is
implemented using two different XBot plugin. One of them
is used to realize the Cartesian impedance controller. The
second plugin implements the FSM behavior exchanging
data (pose to reach, external force detected) with the other
plugin.

IV. EXPERIMENTS

We conducted experiments using a KUKA LBR IIWA 14
robotic arm equipped with an underactuated hand, i.e., the
Pisa/IIT SoftHand [23] in a debris removal setup. An ASUS
Xtion Pro RGB-D sensor was attached in the front part of
the robot arm base and calibrated with respect to the end-
effector. In the default mode, the diagonal components of
the stiffness matrix (Kc) were set to 100N/m on the trans-
lational components, and to 20Nm/rad on the rotational
components. The choice of update rate parameters α and
β in (6) and (7) was done experimentally with the aim of
minimizing the Cartesian error within the trajectory period of
the current state. Different debris lengths and weights were
used in our experiments.

Fig. 4 illustrates the different phases of the task execution
with reference to the FSM states. The leftmost figure at the
top (4.1), shows the robot in the “Homing” state, i.e, its
initial configuration. The robot end-effector then reaches the

Fig. 4: Debris removal sequences performed with KUKA LBR IIWA 14 robotic arm: Homing (1), Reach (2), Adjust (3), Grasp (4), Pick
(5), Unexpected external disturbances (6), Move Away (7), Place Down (8), Ungrasp (9), Homing (10). Please refer to the text for a
detailed explanation of the listed motion primitives.



Fig. 5: Experiment 1 - External forces in the Cartesian space (a), the Cartesian displacement between desired and actual position (b), the
curve trend of the Cartesian stiffness (c), FSM interaction value (d), interaction field value (e) and interaction expectancy value (f). The
dashed vertical lines highlight when the different FSM states are performed referring to Fig. 4.

debris grasp pose received by the object localization mod-
ule (Fig. 4.2, “Reach” state), entering the interaction field
that surrounds the debris area and therefore activating the
interaction field value as shown in Fig. 5.e. The interaction
expectancy value (Fig. 5.f) is not yet activated since the other
component of the logical AND, i.e., the FSM interaction
value (Fig. 5.d), is still False and will be active in future
states (“Pick” and “Place Down”). The sensor fusion of
force and visual localization unit then checks if the grasp
is ready to be executed (Fig. 4.3, “Adjust” state). Once
the debris is in contact with the end-effector, the grasping
action is performed (Fig. 4.4, “Grasp” state) and the object
is picked (Fig. 4.5, “Pick” state). Since the latter state enables
a positive FSM interaction value, the Cartesian stiffness
(Fig. 5.c) is now subject to changes: ∆F ext,t < 0 on z-
axis, so Kc(z) is increased following (6) until the end of the
current state when the FSM interaction value is deactivated.

At the end of the “Pick” state the FSM interaction value
becomes False and so does the interaction expectancy value.
To show that the Cartesian stiffness would not change even if
unexpected external interactions occur, the framework leaves
the robotic manipulator in the current configuration for 10

seconds allowing a person to interact with it. In Fig. 4.6 a
subject perturbs the robot in all the Cartesian axes as the
external forces plot (Fig. 5.a) shows from time 20.5s to
time 30.5s and the Cartesian stiffness is not affected by such
changes, regardless of the force and position displacements.

After these manual perturbations, the FSM restarts its
natural control flow to move away the debris (Fig. 4.7, “Move
Away” state) and place it down (Fig. 4.8, “Place Down”
state). In this state, the FSM interaction value becomes again
True and, since the object is still in the interaction field,
the interaction expectancy value is activated. The Cartesian
stiffness (Fig. 5.c) is again subject to changes, this time
∆F ext,t > 0 on z-axis, so Kc(z) is decreased following
(7) until a lower bound set to 100N/m (as the initial value)
is reached. This behavior results in the object being gently
placed on the ground. At the end of the “Place Down”
state the FSM interaction value is set back to False and
the “Ungrasp” state opens the end-effector and releases the
object (4.9). As soon as the debris exits the interaction field,
the relative interaction field value is set to False. Fig. 4.10
shows the final setup with the object laying on the ground
and the robot back to the “Homing” state ready to start the



Fig. 6: Experiment 2 - External forces in the Cartesian space (a),
Cartesian displacement between desired and actual position (b), and
curve trend of the Cartesian stiffness (c) during state “Pick”.

task over.
A similar experiment was conducted with another object

of different weight (0.7Kg) and length, to demonstrate the
system flexibility to varying task conditions. The results of
the first phase, where the interaction field was active, are
shown in Fig. 6 (“Pick” state). Kc(z) reaches a maximum
value of ≈1330N/m in comparison with the ≈1900N/m of
the first experiment where the weight of the object was 2Kg.
Due to the similarity of the interaction expectancy profiles,
the plots are not repeated here.

V. DISCUSSION AND CONCLUSION

In this work, a novel self-tuning impedance controller
was proposed to improve robot autonomous adaptability
to varying task conditions. The selective adaptation of the
Cartesian impedance parameters was carried out based on
local force and vision sensory data. To improve the situation-
awareness of the robot in responding to expected interactions
and complying with the external disturbances, the interac-
tion expectancy module combined two interaction values
from vision and FSM to make robot controller respond
appropriately and accordingly. The choice of update rate
parameters α and β were carried out experimentally in this
work, that must be improved to enhance robot autonomy.
In this direction, the parameters will be tuned based on the
task and on the object material, retrieved by the perception
module. The effectiveness of the proposed control framework
in adapting to varying task conditions, in the presence of
external disturbances, was experimentally carried out in a
debris removal task.
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