
Designing a Secure Device-to-
Device File Transfer Mechanism

By Chaitanya Rahalkar & Anushka Virgaonkar

1

Introduction

• Secure, reliable and fast transfer of files across the Internet is a problem
attempted to be solved through many application layer protocols. None of
them have managed to do it ideally!

• Requirements for an ideal file transfer mechanism -  
a. Secure 
b. Performance 
c. Private (involves no-third party, or putting trust in a third-party) 
d. Transparency (Open protocol and open source)

2

Introduction, con’t

• Empirical analysis of security

• Comparative analysis with existing options (performance + security +
privacy). Studying trade-offs between performance and security + privacy.

Goals of this project

3

Motivation
There’s no keep it simple, stupid and secure way!

4

Motivation, con’t

• Decade old protocols still in existence! [FTP (File Transfer Protocol) just
celebrated it’s 50th birthday!]

• Securely designed protocols like SCP (Copy over SSH) require port
forwarding if parties are behind a NAT. No regulated access control.

• Cloud-based file transfer have storage + transfer limits. Inherent trust is
placed in closed-source programs. Two stage tedious process - upload +
download

5

Approach, con’t

• Relay Server

• Password Authenticated Key Exchange

• IP Exchange Scheme

• Device Clients

Components

6

Approach, con’t
• The two-computer file transfer approach relies on a relay server to relay

the data packets from the sender to the receiver. As the name suggests,
data is simply relayed, not stored on the server.

• Uploading and downloading can be done simultaneously due to full
duplex communication.

• Relaying is much faster than uploading.

• Bandwidth charges for cloud-hosted relay servers are high! Data centres
charge for ingress and egress bandwidth consumed.

Relay Server

7

Approach, con’t
• Interactive method for two parties (can be more than two) to establish

cryptographic keys based on one or more party’s knowledge of a password.

• Shared session key is established from the secret passphrase. This session
key is used to further encrypt communication between the two parties.

• Without interaction with parties, eavesdropper cannot have enough
information to brute-force!

• Strong security even from weak passwords. Security does not depend on
the strength of the password.

• Handled by another program running on the same relay server.

Password Authenticated Key Exchange

8

Approach, con’t
sPAKE2 (symmetric PAKE)

Further key confirmation step not included
9

Approach, con’t

• In order to establish a communication channel, the relay server must know
the public IP addresses of both the parties.

• One or both of the parties can be behind a NAT router.

IP Exchange Scheme

10

Approach, con’t

• Use TCP sockets for reliable transport

• sPAKE2-based key authentication

• Works even if the client is behind a NAT (not heavily restricted NATs or
hardened firewalls)

Device Client

11

Approach, con’t

• Both the clients exchange messages to establish secure shared key using
sPAKE2 based on the generated passphrase.

• Once the secure channel is established, data is encrypted (NaCl crypto)
and sent in chunks of 16384 bytes.

• Receiver gets a confirmation once the correct passphrase is provided.

• Data is relayed and transferred to the receiver. MAC is used to verify
integrity + authenticity on the receiver end.

Putting it all together

12

Approach, con’t
Putting it all together

13

Approach, con’t
Transfer in Action!

Sender

Receiver

14

Approach, con’t

• WebRTC offers peer-to-peer and real-time communication. (Signaling
server for metadata exchange)

• Traditionally used for VoIP and media communication (audio + video)
(BlueJeans / Kaltura is using WebRTC to stream this!)

• WebRTC has the RTCDataChannel API. It can be used to transfer arbitrary
data between two parties.

• Comes with baked-in security!

When there’s no relay! 
WebRTC Data Channels

15

Approach, con’t
When there’s no relay! 

WebRTC Data Channels

WebRTC Stack 
Source: webrtc-security.github.io

Security

Data Transfer

16

http://webrtc-security.github.io

Approach, con’t
Transfer in Action!

Sender 
SDP  

Receiver
SDP 

17

Results
Overall Security End-to-End

Encryption Source Intermediary
Involved Eavesdroppers

Google Drive
Account-based
(other details

unknown)

No. Keys held
by Google Closed source Yes (Google

Servers) Google, CAs

WebRTC DTLS Yes
Open protocol

design. 
FOSS libs.

No (STUN server
to get public IP)

None. Peer-to-
peer design

Our
implementation

sPAKE, NaCl
Crypto Yes Open protocol

design
Yes (Relay

server)
None. Property

of PAKE

FTP Password-based
access to server. No

Open protocol
design  

 FOSS libs.
Yes (FTP server) FTP server host

Email TLS Only in PGP / S-
MIME

Open protocol
design Yes (Mail server)

Mail servers
(None in PGP/S-

MIME)

SCP AES, RSA /
ECC, HMAC Yes

Open protocol
design 

FOSS libs.
No None

Declared
outdated

by
OpenSSH

18

Results, con’t
• For all intermediary-involved tests, a DigitalOcean VPS at a data centre in

US (Portland, Oregon) [12,714 km from client] was used.

• Benchmarks were taken for binary files (random bytes) of size 1MB,
100MB, 512MB and 1GB.

• For all peer-to-peer tests, one of the peer was the DigitalOcean VPS.

• The relay was hosted at a Google Cloud VPS at a data centre in Council
Bluffs, Iowa [13275 km from one of the client] was used.

• Tests for all other implementations were conducted in a similar environment.

19

Results, con’t
1MB  100MB  512MB  1GB 

SCP 3.28s 49.69s 4m 29s 9m 13s

Our
Implementation

10s 
(receiving)

1m 39s 
(receiving)

6m 12s 
(receiving)

10m 28s

(Receiving)

WebRTC 1.80s 41.32s 4m 13s 7m 2s

FTP 0.37s 55s 7m 12s 16m 32s

20

Conclusion & Observations
• Even though relay transfer is not as performant as direct transfer (WebRTC),

it works in almost all cases.

• Sometimes, WebRTC has problems sending big files. (failure observed on
file.pizza and our implementation using aiortc for files bigger than 1GB).
WebRTC Data Channels are not recommended for large files. (Firefox caps
limit at 1GiB).

• WebRTC data channel packet size is capped at 16KB. Fragmentation
required for larger files. Porting from Javascript to other languages is
complex.

• Trade-offs between performance and security + privacy are considerable.

21

https://file.pizza

