Designing a Secure Device-to-
Device File Transfer Mechanism

By Chaitanya Rahalkar & Anushka Virgaonkar

Georgia
Tech

Introduction

e Secure, reliable and fast transfer of files across the Internet is a problem
attempted to be solved through many application layer protocols. None of
them have managed to do it ideally!

 Requirements for an ideal file transfer mechanism -

a. Secure
b. Performance
c. Private (involves no-third party, or putting trust in a third-party)

d. Transparency (Open protocol and open source)

Introduction, con’t

Goals of this project

 Empirical analysis of security

 Comparative analysis with existing options (performance + security +
privacy). Studying trade-offs between performance and security + privacy.

Motivation

There’s no keep it simple, stupid and secure way!

YOU WANT YOUR COUSIN TO SEND YOU A FILE? EASY.
HE CAN EMAIL IT TO— ... OH, ITS 25 MB? HMM...

|
DO EITHER OF YOU HAVE AN FTP SERVER? NO, RIGHT.
\
IF YOU HAD WEB HOSTING, YOU CoULD UPLOAD IT...

!
HMM. WE COULD TRY ONE OF THOSE MEGASHAREUPLOAD SITES,
BUT THEYRE FLAKY AND FULL OF DELAYS AND PORN FDPURS.

l
HOW ABOUT AIM DIRELT CONNECT ? ANYONE STILL USE THAT?

\

OH, WAIT, DROPBox! ITS THIS RECENT STARTUP FRoM A FEW
YEARS BACK THAT SYNCS FOLDERS BETWEEN COMPUTERS.
YOU JUST NEED TO MAKE AN ACCOUNT, INSTALL THE-—

OH, HE IUST DROVE
OVER To YOUR HOUSE

\J:TH A USB DRIVE?
UH COOL THAT
g WORKS, TOO.

I LIKE HOW WEVE HAD THE INTERNET FOR DECADES,
YET "SENDING FILES" IS SOMETHING EARLY
ADDPTERS ARE STiLL FIBURING OUT HOW TO DO.

Motivation, con’t

 Decade old protocols still in existence! [FTP (File Transfer Protocol) just
celebrated it’s 50t birthday!]

e Securely designed protocols like SCP (Copy over SSH) require port
forwarding if parties are behind a NAI. No regulated access control.

 Cloud-based file transfer have storage + transfer limits. Inherent trust is
placed in closed-source programs. Two stage tedious process - upload +

download E i

Approach, con’t

Components

Relay Server
Password Authenticated Key Exchange
IP Exchange Scheme

Device Clients

Approach, con’t

Relay Server

The two-computer file transfer approach relies on a relay server to relay
the data packets from the sender to the receiver. As the name suggests,
data is simply relayed, not stored on the server.

Uploading and downloading can be done simultaneously due to full
duplex communication.

Relaying is much faster than uploading.

Bandwidth charges for cloud-hosted relay servers are high! Data centres
charge for ingress and egress bandwidth consumed.

Approach, con’t

Password Authenticated Key Exchange

Interactive method for two parties (can be more than two) to establish
cryptographic keys based on one or more party’s knowledge of a password.

Shared session key is established from the secret passphrase. This session
key Is used to further encrypt communication between the two parties.

Without interaction with parties, eavesdropper cannot have enough
information to brute-force!

Strong security even from weak passwords. Security does not depend on
the strength of the password.

Handled by another program running on the same relay server.
3

Approach, con’t
SsPAKE2 (symmetric PAKE)

Bob Alice
1 T=wM + Py, >
2
< S=wN + Pka
Ephemeral Ephemeral
Keypair (Pyp,Skb) Keypair (Pyq,Ska)

w = H(weak-passphrase)
3
K=h*S, ;" (T-wN)

3
K=h*S* (S - wM)

4

Shared Key = H(ID jice Il IDggp Il S 11 T11K 11 W)

Further key confirmation step not included
9

Approach, con’t

IP Exchange Scheme

* In order to establish a communication channel, the relay server must know
the public IP addresses of both the parties.

 One or both of the parties can be behind a NAT router.

10

Approach, con’t

Device Client

 Use TCP sockets for reliable transport
 SPAKE2-based key authentication

 Works even if the client is behind a NAT (not heavily restricted NATs or
hardened firewalls)

11

Approach, con’t
Putting it all together

Both the clients exchange messages to establish secure shared key using
sPAKEZ2 based on the generated passphrase.

Once the secure channel is established, data is encrypted (NaCl crypto)
and sent in chunks of 16384 bytes.

Recelver gets a confirmation once the correct passphrase is provided.

Data is relayed and transferred to the receiver. MAC is used to verify
integrity + authenticity on the receiver end.

12

Approach, con’t
Putting it all together

relay.rahalkar.xyz

Same server for data exchange
and key agreement

Authentication
using sPAKE2

NAT 1 NAT 2
Client Client
Encrypted
Encrypted
Data Data

Rela
e

relay.rahalkar.xyz

Approach, con’t

Transfer in Action!

@Linux in ~/benchmarks via ® v3.9.2 took 2ms
~/Tsend send 1MB.bin Sender

On the other computer, please run: fsend receive (or fsend recv)

Secret code 1s: 2-enrollment-python

1.05 MB / 1.05 MB |] 100.00% 538.13 kB p/s 2.1s
file sent

recon@ubuntu-s-lvcpu-1lgb-blrl-01:~% ./fsend recv
Enter receive secret code: 2-enrollment-python
Recelving file (1.0 MB) into: 1MB.bin

ok? (y/N):y

Recelver

1.05 MB / 1.05 MB |] 100.00% 104.16 kB p/s 10s
recon@ubuntu-s-1lvcpu-1gb-blri-01:~$ J

Approach, con’t

When there’s no relay!
WebRTC Data Channels

WebRTC offers peer-to-peer and real-time communication. (Signaling
server for metadata exchange)

Traditionally used for VolP and media communication (audio + video)
(Bluedeans / Kaltura is using WebRTC to stream this!)

WebRTC has the RTCDataChannel API. It can be used to transfer arbitrary
data between two parties.

Comes with baked-in security!

15

X

Approach, con’t

When there’s no relay!
WebRTC Data Channels

RTCPeerConnection|] DataChannel« pommenmmmesne. D qta Transfer

HR E WebSocket SCTP
HTTP |.x/2 Session (DTLS) < Security
Session (TLS) ICE, STUN, TURN

Transport (TCP)

Network (IP)

WebRTC Stack

Source: webrtc-1%ecuritmithub.io

http://webrtc-security.github.io

Sender
SDP

@Llinux ©n ~/benchmarks via ® v3.9.2 took 2ms
«/webrtc send 1MB.bin

—— Please send this message to the remote party —-

{"sdp": "v=0\r\no=- 3827798933 3827798933 IN IP4 0.0.0.0\r\ns=-\r\nt=0 0\r\na=group:BU
NDLE @\r\na=msid-semantic:WMS *\r\nm=application 40146 DTLS/SCTP 5000\r\nc=IN IP4 192.
168.1.7\r\na=mid:0\r\na=sctpmap:5000 webrtc-datachannel 65535\ r\na=max-message-size:65
536\ r\na=candidate:d3528481068ed87c99af58611926906f 1 udp 2130706431 192.168.1.7 40146
typ host\r\na=candidate:4730076f24ccad9e63cf512158753073 1 udp 1694498815 117.217.44.
94 40146 typ srflx raddr 192.168.1.7 rport 40146\ r\na=end-of-candidates\r\na=ice-ufrag
:m66H\ r\na=ice-pwd:S169Z4gRfghMDvoijZjhuM\r\na=fingerprint:sha-256 BF:CE:BB:81:FC:87:3
6:7F:2C:2C:69:8E:EE:4D:76:3C:96:F4:9A:E9:2E:27:72:73:7D:05:73:E8:08:8A:5F:03\r\na=setu
p:actpass\r\n", "type": "offer"}

—— Please enter a message from remote party —-
{"sdp": "v=0\r\no=- 3827798965 3827798965 IN IP4 0.0.0.0\r\ns=-\r\nt=0 0\r\na=group:BU
NDLE @\r\na=msid-semantic:WMS *\r\nm=application 55790 DTLS/SCTP 5000\r\nc=IN IP4 167.
71.227.140\r\na=mid:0\r\na=sctpmap: 5000 webrtc-datachannel 65535\ r\na=max-message-size
165536\ r\na=candidate:a6b4587524ebat0a@lfad27e18b9af7d 1 udp 2130706431 167.71.227.140
55790 typ host\r\na=candidate:5a92684al1645efe73f01312702f453a2 1 udp 2130706431 10.47
.0.5 36165 typ host\r\na=candidate:175307e69deee@a9c7e5325223080e35 1 udp 2130706431 1
0.122.0.2 58803 typ host\r\na=candidate:580b5f32035da7f14a30ea7a8d826c67 1 udp 2130706
431 172.17.0.1 43565 typ host\r\na=candidate:be678389bed9f023c266ce57a3305e63 1 udp 16
94498815 64.225.87.196 36165 typ srflx raddr 10.47.0.5 rport 36165\r\na=candidate:4258
052a13b002fefle69a749de@97f5 1 udp 1694498815 167.71.227.140 55790 typ srflx raddr 167
.71.227.140 rport 55790\ r\na=end-of-candidates\r\na=ice-ufrag:D9D2\r\na=ice-pwd:Hxbrl5
01l5qvirjg9iTDVU\r\na=fingerprint:sha-256 87:7E:1E:50:FE:6B:D6:BB:6D:46:CC:53:A0:CD:A3
:46:06:5C:01:10:A3:FD:11:A7:00:E6:57:D5:AC:78:D3:D5\r\na=setup:active\r\n", "type'": "a
nswer"}

—— Please enter a message from remote party —-
{"type": nbyeu}

Exiting
—— Please send this message to the remote party —-
{"type": ubyen}

ux in ~/benchmarks via #® v3.9.2 took 50s

O Ko O Ka

Approach, con't -

Recelver
SDP

recon@ubuntu-s-lvcpu-1gh-blrl-01:~$./webrtc receive. 1MB.bin
—— Please enter a message from remote party —-
{"sdp": "v=0\r\no=- 3827798933 3827798933 IN IP4 0.0.0.0\r\ns=-\r\nt=0 0\r\na=group:BU
NDLE @\r\na=msid-semantic:WMS *\r\nm=application 40146 DTLS/SCTP 5000\r\nc=IN"IP4 192.
168.1.7\r\na=mid:0\r\na=sctpmap:5000 webrtc-datachannel 65535\ r\na=max-message-size:65
536\ r\na=candidate:d3528481068ed87c99af58611926906f 1 udp 2130706431 192.168.1.7 40146
typ host\r\na=candidate:4730076f24ccad9e63cf512158753073 1 udp 1694498815 117.217.44.
94 40146 typ srflx raddr 192.168.1.7 rport 40146\ r\na=end-of-candidates\r\na=ice-ufrag
:m66H\ r\na=1ice-pwd:S169Z4gRfghMDvoijZjhuM\r\na=fingerprint:sha-256 BF:CE:BB:81:FC:87:3
6:7F:2C:2C:69:8E:EE:4D:76:3C:96:F4:9A:E9:2E:27:72:73:7D:05:73:E8:08:8A:5F:03\r\na=setu
p:actpass\r\n", "type": "offer"}

—— Please send this message to the remote party —-
{"sdp": "v=0\r\no=- 3827798965 3827798965 IN IP4 0.0.0.0\r\ns=-\r\nt=0 @\'r\na=group:BU
NDLE @\r\na=msid-semantic:WMS *\r\nm=application 55790 DTLS/SCTP 5000\r\nc=IN IP4 167.
71.227.140\r\na=mid: 0\ r\na=sctpmap:5000 webrtc-datachannel 65535\ r\na=max-message-size
165536\ r\na=candidate:a6b4587524eba60adlfad27e18b9af7d 1 udp 2130706431 167.71.227.140
55790 typ host\r\na=candidate:5a92684a1645efe73f013f2702f453a2 1 udp 2130706431 10.47
.0.5 36165 typ host\r\na=candidate:175307e69deee@a9c7e5325223080e35 1 udp 2130706431 1
0.122.0.2 58803 typ host\r\na=candidate:580b5f32035da7f14a30ea7a8d826c67 1 udp 2130706
431 172.17.0.1 43565 typ host\r\na=candidate:be678389bed9f023c266ce57a3305e63 1 udp 16
94498815 64.225.87.196 36165 typ srflx raddr 10.47.0.5 rport 36165\ r\na=candidate:4258
052a13b002fefle69a749de097f5 1 udp 1694498815 167.71.227.140 55790 typ srflx raddr 167
. 71.227.140 rport 55790\ r\na=end-of-candidates\r\na=ice-ufrag:D9D2\r\na=ice-pwd:Hxbrl5
0115qvirjg9iTDVU\r\na=fingerprint:sha-256 87:7E:1E:50:FE:6B:D6:BB:6D:46:CC:53:A0:CD:A3
:46:06:5C:01:10:A3:FD:11:A7:00:E6:57:D5:AC:78:D3:D5\r\na=setup:active\r\n", "type": "a
nswer"}

—— Please enter a message from remote party —-
received 1048576 bytes in 0.5 s (16.946 Mbps)
-— Please send this message to the remote party —-

{"type": nbyeﬂ}

{"type": “bye“}

Exiting

—— Please send this message to the remote party —-

{Il-typell: Ilbyell}

recon@ubuntu-s-1vcpu-1gbh-blri-01:~$ |

2 70 .0 GiB

T §2 °C/'T* 52 °CI/T* §82 °C'T* 8§82 °C'T* 52 °C!I £ 1 muted (6%) 11:00:07 | Mon 10 04 2021 S M # G)

Results

End-to-End intermediary Eavesdroppers

Overall Security Encryption Source Involved

Account-based
. , No. Keys held Yes (Google
Google Drive (other details by Google Closed source Servers) Google, CAs
unknown)
Open protocol e
WebRTC TLS ves design. o (STUN semver None. Peerto
FOSS libs. It P P J
Our sPAKE, NaCl Ves Open protocol Yes (Relay None. Property
implementation Crypto design server) of PAKE

i Open protocol
FTP Password-based No design Yes (FTP server) FTP server host

access to server.

FOSS libs.
. Mail servers
Email TLS Only in PGP /S- Open p_rotocol Yes (Mail server) (None in PGP/S-
MIME design
MIME) Declared
Open protocol outdated
SCP I? CE C? ’ I-RI I\S/IAA(/3 Yes design No None — e by
’ FOSS libs. OpenSSH

18

Results, con’t

For all intermediary-involved tests, a DigitalOcean VPS at a data centre in
US (Portland, Oregon) [12,714 km from client] was used.

Benchmarks were taken for binary files (random bytes) of size 1MB,
100MB, 512MB and 1GB.

For all peer-to-peer tests, one of the peer was the DigitalOcean VPS.

The relay was hosted at a Google Cloud VPS at a data centre in Council
Bluffs, lowa [13275 km from one of the client] was used.

Tests for all other implementations were conducted in a similar environment.

19

Results, con’t

SCP 3.28s 49.69s 4m 29s 9m 13s
Our 10s 1m 39s 6m 12s 10m 28s
Implementation (receiving) (receiving) (receiving) (Receiving)
WebRTC 1.80s 41.32s 4m 13s /m 2s

FTP 0.37s 55s /m 12s 16m 32s

20

Conclusion & Observations

Even though relay transfer is not as performant as direct transfer (WebRTC),
It works in almost all cases.

Sometimes, WebRTC has problems sending big files. (failure observed on
file.pizza and our implementation using aiortc for files bigger than 1GB).
WebRTC Data Channels are not recommended for large files. (Firefox caps

limit at 1GiB).

WebRTC data channel packet size is capped at 16KB. Fragmentation
required for larger files. Porting from Javascript to other languages is

complex.

Trade-offs between performance and security + privacy are considerable.

21

https://file.pizza

