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Abstract— Domestic garbage management is an important
aspect of a sustainable environment. This paper presents a
novel garbage classification and localization system for grasping
and placement in the correct recycling bin, integrated on
a mobile manipulator. In particular, we first introduce and
train a deep neural network (namely, GarbageNet) to detect
different recyclable types of garbage. Secondly, we use a grasp
localization method to identify a suitable grasp pose to pick
the garbage from the ground. Finally, we perform grasping
and sorting of the objects by the mobile robot through a
whole-body control framework. We experimentally validate the
method, both on visual RGB-D data and indoors on a real full-
size mobile manipulator for collection and recycling of garbage
items placed on the ground.

I. INTRODUCTION

Rapid urbanization over the past several years resulted in

an excessive increase of waste generation per capita, from

which a third is not managed in an environmental-friendly

manner [1]. In domestic environments, a large amount of

garbage is daily thrown or left on the ground, polluting the

environment heavily and preventing it from being sustainable

and pleasant. Garbage collection and recycling (i.e., sorting

garbage into different types) is a common solution that

addresses this issue. Garbage separation is essential in this

process, however, it is a labor-intensive job that might also

affect the labors’ health. There are two different types of

garbage sorting: 1) centralized classification, where a large

amount of garbage is dumped on a conveyor and workers

sort out the recyclable waste and 2) piecemeal sorting, which

often happens outdoors, such as in parks and streets, where

sanitation workers pick up different garbage and place them

into corresponding bins. In this paper, we focus on the second

type, which significantly reduces the need of extra sorting in

the factory and reduces hazardous contact between workers

and garbage. Our intention is to allow mobile robots to

collect and sort garbage, preventing in this way workers from

physical health issues and improving the recycling efficiency.

Garbage collection from the ground (Fig. 1-left) for

the purpose of recycling is considered a challenge to be

solved using robots. It involves the integration of several

subsystems. Firstly, visual or another type of perceptual
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Fig. 1: Typical garbage on the ground [2] (left); the IIT-

MOCA/UCL-MPPL mobile robot (right).

sensing is required to identify the existence of garbage in the

environment and further localize them. Moreover, the type

of the garbage must be identified, given that the collection

is for recycling, and thus it needs to be placed in the right

bin. Secondly, the grasp pose of the garbage object needs to

be extracted. Lastly, a planning and control method for the

robot to grasp the garbage and place it into the right bin.

This whole process needs to be done with all garbage items

in the scene in the most efficient way.

In this paper, we introduce a novel integration of the afore-

mentioned scheme, in order to allow a mobile manipulator

to collect garbage from the ground, after identifying their

location, grasping pose, and type. An overview of the system

can be visualized in Fig. 2, while the mobile robot that was

used is visualized in Fig. 1-right and has been modified to

carry three different recycling bins (paper, metal plastic). The

process is as follows. First, RGB-D data are acquired from

the visual sensor on the robot. These data are fed to a deep

learning network (we call it GarbageNet) that is trained to

segment, classify (based on their material type), and localize

all garbage in the 2D RGB scene. The 3D location of each

garbage object can then be extracted from the associated

depth data, as well as the grasp pose of the closest one.

Last, the robot starts approaching the closest garbage and a

whole-body controller enables the robot to grasp the target

object and place it in the right recycling bin.

Next, we review related work of garbage collection and

sorting robots (Sec. I-A). Then, we present our novel in-

tegration of three subsystems, namely the deep garbage

recognition and localization, the grasp pose extraction, and
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Fig. 2: Software architecture of the whole system.

the whole-body mobile manipulation (Sec. II). Moreover,

we demonstrate the performance of our introduced system

through experimental results (Sec. III). Finally, we conclude

with future directions (Sec. IV).

A. Related Work

The vast majority of autonomous garbage sorting robots

mainly focus on the centralized classification, i.e., an au-

tomated conveyor along with one or more arms and a

visual detection system are combined to sort garbage in the

factory. The most representative one is the sorting station

developed by ZenRobotics Recycler in Finland [3]. A high-

resolution 3D sensor is used to get an isometric 2D height

map of the conveyor, then a machine learning method

is employed for object recognition and manipulation. The

sorting efficiency of this system is as high as 98%, and

the average sorting speed is 3000 times per hour. Another

successful commercial product is the Waste Robotics devel-

oped by FANUC [4], where convolutional neural networks

are employed to classify data that are collected by RGB-D

cameras. After the model is trained successfully, the robot

arm uses suction grippers to pick the recyclable waste. A

similar approach has been recently investigated using a fast

parallel manipulator with a suction gripper, for sorting items

on a conveyor [5]. Several other similar systems have been

developed recently [6], [7], [8], and the difference from our

approach is that they usually classify items in a known

background environment (conveyor) in the factory, while

we are looking into sorting items during their collection by

grasping from the ground and placing them in the right bin.

The second type of garbage sorting (i.e., piecemeal) that

we are interested in this paper, still remains an active

research area in robotics, with several open challenges. For

instance, the potential unstructured surrounding environment

that garbage may lie in, or the fact that a robot operating

robustly and efficiently in such a task, involves many as-

pects of operations, such as object recognition, grasp pose

estimation, grasp control algorithm, path planning, etc. Even

though there is work to been done on garbage detection [9],

[10], the only mobile manipulation robotic system that has

developed a pick-up garbage method on the grass is the one

presented by Bai et al. [11]. In particular, a deep learning

method is deployed to classify the waste on the grass (i.e.,

as waste or not) and a novel navigation algorithm is presented

based on grass segmentation. However, this system does not

work in real-time and is not able to classify garbage by type

for the purpose of recycling. In this paper, we propose a

novel integration of systems that detect the type and pose of

the garbage on the floor and use state-of-the-art whole-body

control to collect them and sort them in the right bin, based

on their type.

II. METHODS

In this section, we discuss the approaches we employ to

realize the garbage recycling robot, including finding what

and where the garbage is and how the robot can grasp it.

A. GarbageNet: Deep Garbage Recognition & Localization

While object detection methods satisfy the demands of

garbage classification and localization, by providing class

labels and bounding boxes, instance segmentation methods

have the advantage of also providing pixel-level masks.

These masks can then be projected onto a depth image and

significantly simplify the robot grasp search for a given target

object.

Given the need to detect and localize garbage in real-

time with the mobile robot, we decided to use the YOLACT

framework introduced in [12] and train it for garbage objects.

We have named the new trained network GarbageNet. Using

this type of network structure it is possible to infer the bound-

ing box and type of an object, as well as to acquire pixel-level

object masks that could better help the robot comprehend



Fig. 3: GarbageNet: Convolutional image features are

produced and passed onto two branches - the Protonet

branch produces mask prototypes, while the other estimates

their coefficients. Both are combined into an instance-level

mask [12].

its surrounding environment. The real-time performance and

high accuracy contribute to its advantage over other types

of object segmentation methods, such as Mask R-CNN [13],

SOLO [14] and TensorMask [15]. We have integrated the

original network in a ROS wrapper, where the robot visual

sensor is used as input and the garbage object segmentation,

bounding box, type, and grasping pose messages are gen-

erated. Our framework produces instance masks and scores

them with mask coefficients. Masks are combined using Non-

Maximum Suppression (NMS) to ensure there is no overlap

between instances while retaining useful information. The

core structure is shown in Fig. 3.

1) Dataset: The original YOLACT network is trained on

the COCO [16] dataset, originally used for image recogni-

tion and does not fulfill the requirements of garbage type

characterization and segmentation. Thus, a novel dataset to

train GarbageNet for garbage identification was needed. For

this reason, we used the newly introduced TACO dataset [2],

which is specialized for garbage segmentation and classi-

fication. The dataset uses an object taxonomy that can be

directly used for garbage sorting purposes. In particular, it

includes 1500 images with 4784 annotations, 60 categories

which belong to 28 super-categories (e.g., paper, glass, metal,

carton, plastic, polypropylene, etc). Moreover, the objects’

background environment includes both indoors and outdoors

environments, such as tiles, pavements, grass, roads, etc. In

this way, even deformed garbage objects in the wild can be

classified and segmented.

2) Training: To exploit our framework, we randomly

split the TACO dataset into training (80%), cross-validation

(10%), and testing (10%) sets. We used an ImageNet [17]

pre-trained model of YOLACT to fine-tune the weights on

the TACO dataset, using a batch size of 8 on two Titan XP

GPUs for 1 day and 40, 000 iterations (learning rate: 10−3,

weight decay: 5× 10−4, momentum: 0.9). Using ResNet-50

as backbone, we achieved a mAP75 of 40.43 (mean Average

Precision with an IoU threshold of 0.75), in roughly 30
frames per second (i.e. almost the speed of the input RGB-D

sensing). This is slightly better than the original mAP75 of

YOLACT on the COCO dataset, which is 31.2, or Mask R-

CNN, which is around 37.8. Notice here that the exact mask

(a) (b)

Fig. 4: Grasps produced by GPD [19]: (a) candidate pool

and (b) axes defining each grasp.

segmentation of the object is not particularly important in this

stage, since the grasping pose is extracted from a different

process, as described in the next section.

3) Implementation: To allow the system be integrated on

our ROS-based architecture, a wrapper was used to interact

easily with the other components and the real robot through

ROS topics. In particular, an interface node subscribes to

the input point cloud and the GarbageNet-produced masks,

which in turn projects the masks onto the point cloud. The

approximate position of the closest garbage piece is produced

using these projections. The interface also filters the detected

garbage category into three super-categories: paper, metal

and plastic, based on keyword search. Finally, the interface

publishes the approximate position of the nearest object, its

projected mask points and its super-category.

B. GPD: Grasp Pose Detection

Traditional grasp pose generation methods [18] require

either the geometric properties or an exact 3D model of the

targeted object. However, litter thrown on the ground often

has a non-rigid structure with varying textures and shapes.

Providing precise models or establishing a large garbage

grasping database is impractical. Moreover, a mobile robot

dealing with cluttered scenes would only have access to

RGB-D information from a single view.

A more general solution that deals with these challenges

would be to generate grasps directly from a voxelized

point cloud. That is the principle on which Grasping Pose

Detection (GPD) [19] is based. GPD has successfully been

integrated with object detectors in cluttered environments.

1) Method: The GPD algorithm follows several steps as

briefly outlined in Algorithm 1.

Algorithm 1: Grasp Pose Detection

input : Pointcloud C;

Subset of points where the grasps are to occur S;

Grasp filtering parameters Θ;

output: Grasp Configurations G;

1) H = HandSearch(C, S);

2) G = SelectGraspConfigurations(H,C,Θ);

In Step 1, the received point cloud data C is voxelized and

filtered. Points uniformly sampled from the subset of points



Fig. 5: Perception pipeline: Input image is passed through GarbageNet to detect garbage. In the interface, masks of detected

objects are projected onto the point cloud. The approximate position of the nearest garbage is outputted, while its mask

projection is used as sampling points for GPD. A garbage type label is also produced. Finally, GPD produces a grasp.

S are used to produce hand candidates (see Fig. 4a) at the

axes aligned with the points’ normals. Each hand candidate

is defined by axes for approach, hand binormal and object

axis as shown in Fig. 4b. Filtering is applied to reject any

candidates that would collide with the point cloud or do not

contain at least one point in the closing region of the hand.

In Step 2, grasp candidates are produced from the hand

candidates, given some allowable angle deviation and ap-

proach restrictions Θ. The candidates are encoded into sev-

eral image embeddings, which are passed through a trained

convolutional neural network based on LeNet [20]. The

output of the network classifies the candidates as successful

grasps by assigning them a score. Finally, the grasp config-

urations G with the highest scores are selected as the best

ones.
2) Implementation: The pre-trained original implementa-

tion of the GPD package [21] is used within a GPD ROS

wrapper. The input to GPD is set as the RGB-D view

received from a camera, along with sampling points based

on the detected garbage instance masks to provide a region

of interest. The outputted grasp with the highest score is

selected and transformed into a ROS pose message type.

Following the aforementioned framework, a unified

garbage detection, classification, localization and grasp gen-

eration pipeline is created by connecting GarbageNet and

GPD through an interface node as shown in Fig. 5.

C. Whole-Body Mobile Manipulation Grasping

With the aim of localizing and collecting garbage items

from the ground with a robotic system, we introduce in this

section the control module that has been implemented on

the research platform IIT MOCA/UCL MPPL [22]. This

versatile cobot is composed by a Robotnik SUMMIT-XL

STEEL mobile platform (3-Degrees of Freedom (DoFs)),

and a Franka Emika Panda robotic arm (7-DoFs). Since

the control of the former is achieved through admittance

control while the robotic arm is torque-controlled, a Whole-

Body Impedance Controller has been developed to deal with

their different causalities, extending our methods introduced

in [23], [24]. The implementation of such control system

allows both to achieve the desired end-effector behavior,

and to exploit the redundant DoFs of the robot. This is a

fundamental requirement to successfully execute autonomous

and complex manipulation tasks.

Considering the mobile-manipulator with 3-DoFs (rigid

body motion) at the mobile base and n-DoFs at the ma-

nipulator, we can define the generalised coordinates q =
[qT

v qT
r ]

T ∈ R
3+n, with qv and qr the coordinates of the

mobile base and the manipulator. We describe the dynamics

equations of the combined system as follows, taking into

account the admittance causality of the mobile base that is

velocity controlled:

M
︷ ︸︸ ︷
[
Madm 0

0 M r

] [
q̈v

q̈r

]

+

C
︷ ︸︸ ︷
[
Dadm 0

0 Cr

] [
q̇v

q̇r

]

+

g
︷ ︸︸ ︷
[
0

gr

]

=

[
Γ
vir

v

Γr

]

+

[
Γ
ext

v

Γ
ext

r

]

,

(1)

where Madm ∈ R
3×3 and Dadm ∈ R

3×3 represent the

virtual inertial and virtual damping terms for the admittance

control of the mobile base, q̇v ∈ R
3 is the velocity of

the generalised motion of mobile platform, Γvir

v ∈ R
3 and

Γ
ext

v ∈ R
3 are the virtual and external torques. M r ∈ R

n×n

is the symmetric and positive definite inertial matrix, Cr ∈

R
n×n is the Coriolis and centrifugal matrix, gr ∈ R

n is the

gravity vector, Γr ∈ R
n and Γ

ext

r ∈ R
n are the joint torque

vector and external torque vector of the robotic manipulator,

respectively.

Let us consider x ∈ R
6 as the task coordinates in Carte-

sian space. It follows that the desired task-space dynamics

behaviour in response to the external wrench F ext ∈ R
6,

(leading to the external torques Γ
ext = [Γext

v

T
Γ
ext

r

T
]T in

(1)), can be obtained as:

F ext = Λ(q)¨̃x+ (µ(q) +D) ˙̃x+Kx̃, (2)



Fig. 6: Example output of input point clouds (left), GarbageNet mask and classification of the closest garbage (middle,

zoomed), mask projected onto the pointcloud (middle) and grasps generated via GPD (right).

where x̃ = x−xd is the Cartesian error from the desired task

xd, and K ∈ R
6×6 and D ∈ R

6×6 are the desired Cartesian

stiffness and damping matrices, respectively. Λ(q) ∈ R
6×6

represents the Cartesian inertial and µ(q) ∈ R
6×6 the

Cartesian Coriolis and centrifugal matrix, respectively. For

more details, please see our previous work on this [22].

In order to navigate through unstructured environment and

to grasp garbage items from the ground, it is crucial to

selectively assign different mobility priorities to the mobile

base or to the robotic arm, when a desired trajectory is

executed at the end-effector level. Specifically, during the

exploration of the environment, the robot movements must be

performed mostly by the mobile base, while when collecting

objects from the ground the priority needs to be set to the

arm movements.

To this end, we implemented a weighted dynamically-

consistent pseudo-inverse to achieve such behaviours. This is

done by applying the desired motion constraints through real-

time variable weighting factors. The weighted dynamically

consistent pseudo-inverse is defined as

J̄W = W−1M−1JT
ΛWΛ

−1, (3)

where ΛW = J−TMWMJ−1 represents the weighted

Cartesian inertia, J ∈ R
6×(3+n) denotes the whole-body

Jacobian matrix, M ∈ R
(3+n)×(3+n) is the whole-body

inertial matrix, and W ∈ R
(3+n)×(3+n) is the diago-

nal and positive-definite weight matrix defined by W =
diag

(
[w1 w2 · · · wn]

)
, with wi ≥ 0. Therefore, a

higher value of wi at the i-th joint will impede the motion

of that joint, and W = I3+n will make no effect on the

motion mapping.

Finally, the whole-body Cartesian impedance controller’s

commanded torque for the main task are calculated as:

Γimp = g + J̄W (Λwẍd + µwẋd −Kdx̃−Dd
˙̃x). (4)

The robot desired poses are retrieved through the Trajec-

tory planner unit, that, once received as input a target pose,

computes the intermediate waypoints by means of a classical

fifth-order polynomial law.

III. EXPERIMENTAL RESULTS

In this section, we present a brief experimental analysis

of the garbage segmentation and classification (GarbageNet),

Fig. 7: GarbageNet classification and segmentation: images

with single items are classified correctly with high confidence

scores (top). Images containing multiple items are classified

with smaller confidence score due to occlusions (bottom).

grasp pose proposal (GPD), and overall system performance

that identifies and collects for recycling three different types

of garbage (paper, metal, plastic) using the whole-body

controlled mobile manipulation robot.

A. GarbageNet: Garbage Segmentation and Classification

To test the quality of GarbageNet segmentation and clas-

sification introduced in Sec. II-A, we have first validated

on the testing TACO dataset (see Sec. II-A.2), with a

resultant mAP75 of 40.43 at 30 frames per second. We

further segmented several unseen test images (roughly 1h

of recorded data, including objects from the categories into

which we will be sorting), both from a handheld RGB-D

RealSense camera and the visual sensor of the mobile robot.



It is found that instance segmentation of spread out pieces

of garbage is successful (Fig. 7-top), while in some scenes

containing a cluster of many pieces of garbage it is less

successful and needs a further research investigation (Fig. 7-

bottom). This localization failure of cluttered scenes has

been identified as one of two typical errors encountered in

mask generation by GarbageNet, the second being leakage -

noise that is included in the instance mask when a bounding

box is not accurate [12]. The success of the classification

of garbage provided by GarbageNet is influenced by the

quality of the images that are provided to the system. It is

found that in overexposed images, the algorithm struggles to

detect features that differentiate the garbage item from the

surrounding environment.

B. GPD: Garbage Grasp Proposal

An advantage of our introduced system is that the pre-

cision of the garbage mask segmentation and bounding-

box estimation does not highly influence the grasping pose

extraction, since this is estimated from the GPD method,

introduced in Sec. II-B. Items of garbage to be picked are

provided to the GPD node sequentially by order of proximity

to the robot. Some example grasp generation sequences are

shown in Fig. 6. The quality of the grasps generated by GPD

depends on the number of sample points on the item, e.g.,

a sparse point cloud can result in no grasp candidates. This

was observed in some scenes, but it was quickly rectified

by capturing new RGB-D data. With a well populated point

cloud, GPD produces very good grasp proposals with a

grasping success rate of almost 90%, tested with 50 grasps

on the robotic manipulator.

Notice that we had to restrict all grasps to be from the

top of the object, to respect the reachability constraints

of the robot manipulator. GPD parameters allow for easy

selection of approach direction as well as allowable angle

deviation from it. It was found that when generating grasps

on objects that were seen only from the side, GPD, as

expected, struggles to produce grasps from above and data

recapturing is required from a different pose. Generated

grasps have been successfully transferred from simulation

to the real robots with a two fingered mobile manipulator.

C. Whole-Body Grasping Results

Exploiting the Whole-Body impedance controller intro-

duced in Sec. II-C, we performed a set of experiments

with the IIT MOCA/UCL MPPL robotic platform (Fig. 1-

left). To describe the phases of such experiments, we follow

the control flow of the Finite State Machine (FSM) (see

Fig. 2). As in a real world scenario, the mobile robot explores

the environment, until an acknowledgment (ack) message is

provided by the visual perception module. Fig. 8 shows all

the phases taking place after this ack is triggered for three

different materials: metal (a), paper (b), and plastic (c). In the

garbage detected state (light red), the robot halts its motion,

so that GarbageNet identifies the garbage type, and GPD ex-

tracts the grasp pose. These data are sent to the FSM, that can

move on to the next phases. The grasp pose (visualized inside

(a)

(b)

(c)

Fig. 8: The grasping results performed by the IIT

MOCA/UCL MPPL robotic platform exploiting the Whole-

Body impedance controller. Images of garbage detection

(with the grasp pose in the embedded image), reach, grasp,

and disposal in the correct type of trash bin are visualized.

Three different items were identified and collected: a tomato

juice can - classified as metal (a), a lentils carton box -

classified as paper (b), and a water plastic bottle - classified

as plastic (c).



the garbage detection image in Fig. 8) is reported in the plots

with point markers at the moment of detection, and reported

until the grasp takes place with (dashed lines). Next, in the

garbage reach state (light blue), the robot moves towards

this grasp pose. During this process we can distinguish two

sub-phases. In the first one, the robot reaches the vicinity of

the goal pose, assigning a higher priority to the mobile base

through (3), i.e. setting wi = 1 to the mobile base joints and

wi = 3 to the arm joints, with the impedance parameters

set to a compliant value K = diag(500N/m). Like this,

the mobile robot can approximately reach the item pose in a

compliant way, and avoiding unnecessary movements of the

arm out of the mobile base support polygon. This guarantees

a safety interaction in case of an unexpected collision with

the environment. Subsequently, the priority is switched to

the arm through (3), i.e. setting wi = 5 to the mobile base

joints and wi = 1 to the arm joints, and the impedance

parameters are set to be stiffer with K = diag(1000N/m).
In this way, the robotic arm can reach the ground towards the

grasp pose in a precise manner. From Fig. 8, it is possible

to notice that the robot end-effector reaches the grasp pose

with a high accuracy, so that the garbage grasp state (light

green) can be performed successfully. In this state, the robot

gripper closes its finger until a force of 3N is sensed, to

ensure the object is firmly grasped. Lastly, in the garbage

trash state (light yellow) the robot takes the garbage item to

the corresponding trash bin placed on its back, selecting it

through the garbage type message received previously.

IV. CONCLUSIONS AND FUTURE WORK

In this work, we present a novel garbage identification and

sorting system, integrated on a mobile robot, using whole-

body control. This approach works in real-time, identifying,

localizing, and sorting garbage.

In the future, we aim at validating the integrated system

outdoors in the wild, under various forecast conditions, and

work further on the path planning and exploitation part of

the method. In particular, the problem of where to look for

garbage in a big outdoors space and how to collect them

in an energy and time efficient way are our next steps to

address the problem.
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