Skip to content

Commit 60baed6

Browse files
committedApr 18, 2015
wavesynth: get coefficients.py into useable state
SplineSource() supports spline interpolating multi-channel tabular data, cropping it and generating wavesynth compatible segment data from it. ComposingSplineSource() needs some verification still.
1 parent 5805240 commit 60baed6

File tree

3 files changed

+292
-58
lines changed

3 files changed

+292
-58
lines changed
 

Diff for: ‎artiq/test/coefficients.py

+38
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,38 @@
1+
import unittest
2+
3+
import numpy as np
4+
5+
from artiq.wavesynth import coefficients, compute_samples
6+
7+
8+
class TestSplineCoef(unittest.TestCase):
9+
def setUp(self):
10+
self.x = np.arange(5.)
11+
self.y = np.sin(2*np.pi*self.x/5) + np.arange(2)[:, None]
12+
self.s = coefficients.SplineSource(self.x, self.y, order=4)
13+
14+
def test_get_segment(self):
15+
return list(self.s.get_segment_data(1.5, 3.2, 1/100.))
16+
17+
def test_synth(self):
18+
d = self.test_get_segment()
19+
d[0]["trigger"] = True
20+
return compute_samples.Synthesizer(self.y.shape[0], [d, d + d])
21+
22+
def drive(self, s):
23+
y = []
24+
for f in 0, 1, None, 0:
25+
if f is not None:
26+
s.select(f)
27+
y += s.trigger()[0]
28+
return y
29+
30+
def test_run(self):
31+
return self.drive(self.test_synth())
32+
33+
@unittest.skip("manual/visual test")
34+
def test_plot(self):
35+
import cairoplot
36+
y = self.test_run()
37+
x = list(range(len(y)))
38+
cairoplot.scatter_plot("plot.png", [x, y])

Diff for: ‎artiq/wavesynth/coefficients.py

+251-55
Original file line numberDiff line numberDiff line change
@@ -1,67 +1,263 @@
11
import numpy as np
22
from scipy.interpolate import splrep, splev, spalde
3+
from scipy.special import binom
4+
5+
6+
class UnivariateMultiSpline:
7+
"""Multidimensional wrapper around `scipy.interpolate.sp*` functions.
8+
`scipy.inteprolate.splprep` unfortunately does only up to 12 dimsions.
9+
"""
10+
def __init__(self, x, y, order=4):
11+
self.order = order
12+
self.s = [splrep(x, yi, k=order - 1) for yi in y]
13+
14+
def lev(self, x, *a, **k):
15+
return np.array([splev(x, si) for si in self.s])
16+
17+
def alde(self, x):
18+
u = np.array([spalde(x, si) for si in self.s])
19+
if len(x) == 1:
20+
u = u[:, None, :]
21+
return u
22+
23+
def __call__(self, x, use_alde=True):
24+
if use_alde:
25+
u = self.alde(x)[:, :, :self.order]
26+
s = (len(self.s), len(x), self.order)
27+
assert u.shape == s, (u.shape, s)
28+
return u.transpose(2, 0, 1)
29+
else:
30+
return np.array([self.lev(x, der=i) for i in range(self.order)])
31+
32+
33+
class UnivariateMultiSparseSpline(UnivariateMultiSpline):
34+
def __init__(self, d, x0=None, order=4):
35+
self.order = order
36+
self.n = sorted(set(n for x, n, y in d))
37+
self.s = []
38+
for n in self.n:
39+
x, y = np.array([(x, y) for x, ni, y in d if n == ni]).T
40+
if x0 is not None:
41+
y0 = splev(x0, splrep(x, y, k=order - 1))
42+
x, y = x0, y0
43+
s = splrep(x, y, k=order - 1)
44+
self.s.append(s)
45+
46+
47+
def pad_const(x, n, axis=0):
48+
"""Prefix and postfix the array `x` by `n` repetitions of the first and
49+
last vlaue along `axis`.
50+
"""
51+
a = np.repeat(x.take([0], axis), n, axis)
52+
b = np.repeat(x.take([-1], axis), n, axis)
53+
xp = np.concatenate([a, x, b], axis)
54+
s = list(x.shape)
55+
s[axis] += 2*n
56+
assert xp.shape == tuple(s), (x.shape, s, xp.shape)
57+
return xp
58+
59+
60+
def build_segment(durations, coefficients, target="bias",
61+
variable="amplitude"):
62+
"""Build a wavesynth-style segment from homogeneous duration and
63+
coefficient data.
64+
65+
:param durations: 1D sequence of line durations.
66+
:param coefficients: 3D array with shape `(n, m, len(x))`,
67+
with `n` being the interpolation order + 1 and `m` the number of
68+
channels.
69+
:param target: The target component of the channel to affect.
70+
:param variable: The variable within the target component.
71+
"""
72+
for dxi, yi in zip(durations, coefficients.transpose()):
73+
d = {"duration": int(dxi)}
74+
d["channel_data"] = cd = []
75+
for yij in yi:
76+
cdj = []
77+
for yijk in reversed(yij):
78+
if cdj or abs(yijk):
79+
cdj.append(float(yijk))
80+
cdj.reverse()
81+
cd.append({target: {variable: cdj}})
82+
yield d
383

484

585
class CoefficientSource:
6-
def get_times(self, t, speed, clock):
7-
pass
8-
9-
def get_coefficients(self, t, speed):
10-
pass
11-
12-
def get_program(self, dt, u):
13-
pass
14-
15-
16-
def _round_times(times, sample_times=None):
17-
times = np.asanyarray(times)
18-
if sample_times is None:
19-
sample_times = np.rint(times)
20-
duration = np.diff(sample_times)
21-
sample_times = sample_times[:-1]
22-
assert np.all(duration >= 0)
23-
assert np.all(duration < (1 << 16))
24-
return times, sample_times, duration
25-
26-
27-
def _interpolate(time, data, sample_times, order=3):
28-
# FIXME: this does not ensure that the spline does not clip
29-
spline = splrep(time, data, k=order or 1)
30-
# FIXME: this could be faster but needs k knots outside t_eval
31-
# dv = np.array(spalde(t_eval, s))
32-
coeffs = np.array([splev(sample_times, spline, der=i, ext=0)
33-
for i in range(order + 1)]).T
34-
return coeffs
35-
36-
37-
38-
def _zip_program(times, channels, target):
39-
for tc in zip(times, *channels):
40-
yield {
41-
"duration": tc[0],
42-
"channel_data": tc[1:],
43-
}
44-
# FIXME: this does not handle:
45-
# `clear` (clearing the phase accumulator)
46-
# `silence` (stopping the dac clock)
47-
48-
49-
def interpolate_channels(times, data, sample_times=None, **kwargs):
50-
if len(times) == 1:
51-
return _zip_program(np.array([1]), data[:, :, None])
52-
data = np.asanyarray(data)
53-
assert len(times) == len(data)
54-
times, sample_times, duration = _round_times(times, sample_times)
55-
channel_coeff = [_interpolate(sample_times, i, **kwargs) for i in data.T]
56-
return _zip_program(duration, np.array(channel_coeff))
57-
# v = np.clip(v/self.max_out, -1, 1)
58-
#
59-
#
86+
def crop_x(self, start, stop, num=2):
87+
"""Return an array of valid sample positions.
88+
89+
This function needs to be implemented only if this
90+
`CoefficientSource` does not support sampling at arbitrary
91+
positions.
92+
93+
:param start: First sample position.
94+
:param stop: Last sample position.
95+
:param num: Number of samples between `start` and `stop`.
96+
:return: Array of sample positions. `start` and `stop` should be
97+
returned as the first and last value in the array respectively.
98+
"""
99+
return np.linspace(start, stop, num)
100+
101+
def scale_x(self, x, scale):
102+
"""Scale and round sample positions.
103+
104+
:param x: Input sample positions in data space.
105+
:param scale: Data space position to cycles conversion scale,
106+
in units of x-units per clock cycle.
107+
:return: `x_sample`, the rounded sample positions and `durations`, the
108+
integer durations of the individual samples in cycles.
109+
"""
110+
raise NotImplementedError
111+
112+
def __call__(self, x, **kwargs):
113+
"""Perform sampling and return coefficients.
114+
115+
:param x: Sample positions.
116+
:return: `y` the array of coefficients. `y.shape == (order, n, len(x))`
117+
with `n` being the number of channels."""
118+
raise NotImplementedError
119+
120+
def get_segment_data(self, start, stop, scale, cutoff=1e-12,
121+
min_duration=1, min_length=20,
122+
target="bias", variable="amplitude"):
123+
"""Build wavesynth segment data.
124+
125+
:param start: see `crop_x()`.
126+
:param stop: see `crop_x()`.
127+
:param scale: see `scale_x()`.
128+
:param num: see `crop_x()`.
129+
:param cutoff: coefficient cutoff towards zero to compress data.
130+
:param min_duration: Minimum duration of a line.
131+
:param min_length: Minimum segment length to space triggers.
132+
"""
133+
x = self.crop_x(start, stop)
134+
x_sample, durations = self.scale_x(x, scale)
135+
coefficients = self(x_sample)
136+
np.clip(np.fabs(durations), min_duration, None, out=durations)
137+
if len(durations) == 1:
138+
durations[0] = max(durations[0], min_length)
139+
if start == stop:
140+
coefficients = coefficients[:1]
141+
# rescale coefficients accordingly
142+
coefficients *= (scale*np.sign(durations))**np.arange(
143+
coefficients.shape[0])[:, None, None]
144+
if cutoff:
145+
coefficients[np.fabs(coefficients) < cutoff] = 0
146+
return build_segment(durations, coefficients, target=target,
147+
variable=variable)
148+
149+
def extend_segment(self, segment, *args, **kwargs):
150+
"""Extend a wavesynth segment.
151+
152+
See `get_segment()` for arguments.
153+
"""
154+
for line in self.get_segment_data(*args, **kwargs):
155+
segment.add_line(**line)
156+
157+
158+
class SplineSource(CoefficientSource):
159+
def __init__(self, x, y, order=4, pad_dx=1.):
160+
"""
161+
:param x: 1D sample positions.
162+
:param y: 2D sample values.
163+
"""
164+
self.x = np.asanyarray(x)
165+
assert self.x.ndim == 1
166+
self.y = np.asanyarray(y)
167+
assert self.y.ndim == 2
168+
169+
if pad_dx is not None:
170+
a = np.arange(-order, 0)*pad_dx + self.x[0]
171+
b = self.x[-1] + np.arange(1, order + 1)*pad_dx
172+
self.x = np.r_[a, self.x, b]
173+
self.y = pad_const(self.y, order, axis=1)
174+
175+
assert self.y.shape[1] == self.x.shape[0]
176+
self.spline = UnivariateMultiSpline(self.x, self.y, order)
177+
178+
def crop_x(self, start, stop):
179+
ia, ib = np.searchsorted(self.x, (start, stop))
180+
if start > stop:
181+
x = self.x[ia - 1:ib - 1:-1]
182+
else:
183+
x = self.x[ia:ib]
184+
return np.r_[start, x, stop]
185+
186+
def scale_x(self, x, scale, nudge=1e-9):
187+
# We want to only sample a spline at t_knot + epsilon
188+
# where the highest order derivative has just jumped
189+
# and is valid at least up to the next knot after t_knot.
190+
#
191+
# To ensure that we are on the right side of a knot:
192+
# * only ever increase t when rounding (for increasing t)
193+
# * or only ever decrease it (for decreasing t)
194+
#
195+
# The highest derivative is discontinuous at t
196+
# and the correct value for a segment is obtained
197+
# for t_int >= t_float == t_knot (and v.v. for t decreasing).
198+
x = x/scale
199+
inc = np.diff(x) >= 0
200+
inc = np.r_[inc, inc[-1]]
201+
x = np.where(inc, np.ceil(x + nudge), np.floor(x - nudge))
202+
if len(x) > 1 and x[0] == x[1]:
203+
x = x[1:]
204+
if len(x) > 1 and x[-2] == x[-1]:
205+
x = x[:-1]
206+
x_sample = x[:-1]*scale
207+
durations = np.diff(x.astype(np.int))
208+
return x_sample, durations
209+
210+
def __call__(self, x):
211+
return self.spline(x)
212+
213+
214+
class ComposingSplineSource(SplineSource):
215+
# TODO
216+
def __init__(self, x, y, components, order=4, pad_dx=1.):
217+
self.x = np.asanyarray(x)
218+
assert self.x.ndim == 1
219+
self.y = np.asanyarray(y)
220+
assert self.y.ndim == 3
221+
222+
if pad_dx is not None:
223+
a = np.arange(-order, 0)*pad_dx + self.x[0]
224+
b = self.x[-1] + np.arange(1, order + 1)*pad_dx
225+
self.x = np.r_[a, self.x, b]
226+
self.y = pad_const(self.y, order, axis=2)
227+
228+
assert self.y.shape[2] == self.x.shape[0]
229+
self.splines = [UnivariateMultiSpline(self.x, yi, order)
230+
for yi in self.y]
231+
232+
# need to resample/upsample the shim splines to the master spline knots
233+
# shim knot spacings can span an master spline knot and thus would
234+
# cross a highest order derivative boundary
235+
self.components = UnivariateMultiSparseSpline(
236+
components, self.x, order)
237+
238+
def __call__(self, t, gain={}, offset={}):
239+
der = list((set(self.components.n) | set(offset)) & set(self.der))
240+
u = np.zeros((self.splines[0].order, len(self.splines[0].s), len(t)))
241+
# der, order, ele, t
242+
p = np.array([self.splines[i](t) for i in der])
243+
# order, der, None, t
244+
s = self.components(t)
245+
s_gain = np.array([gain.get(_, 1.) for _ in self.components.n])
246+
s = s[:, :, None, :]*s_gain[None, :, None, None]
247+
for k, v in offset.items():
248+
if v and k in self.der:
249+
u += v*p[self.der.index(k)]
250+
ps = p[[self.der.index(_) for _ in self.shims.der]]
251+
for i in range(u.shape[1]):
252+
for j in range(i + 1):
253+
u[i] += binom(i, j)*(s[j]*ps[:, i - j]).sum(0)
254+
return u # (order, ele, t)
255+
60256

61257
def discrete_compensate(c):
62258
"""Compensate spline coefficients for discrete accumulators
63259
64-
Given continuous time b-spline coefficients, this function
260+
Given continuous-time b-spline coefficients, this function
65261
compensates for the effect of discrete time steps in the
66262
target devices.
67263

Diff for: ‎artiq/wavesynth/compute_samples.py

+3-3
Original file line numberDiff line numberDiff line change
@@ -81,17 +81,17 @@ def __init__(self, nchannels, program):
8181

8282
def select(self, selection):
8383
if self.line_iter is not None:
84-
raise TriggerError
84+
raise TriggerError("a frame is already selected")
8585
self.line_iter = iter(self.program[selection])
8686
self.line = next(self.line_iter)
8787

8888
def trigger(self):
8989
if self.line_iter is None:
90-
raise TriggerError
90+
raise TriggerError("no frame selected")
9191

9292
line = self.line
9393
if not line.get("trigger", False):
94-
raise TriggerError
94+
raise TriggerError("segment is not triggered")
9595

9696
r = [[] for _ in self.channels]
9797
while True:

0 commit comments

Comments
 (0)
Please sign in to comment.