canny.py - Canny Edge detector

Reference: Canny, J., A Computational Approach To Edge Detection, IEEE Trans.
Pattern Analysis and Machine Intelligence, 8:679-714, 1986

Originally part of CellProfiler, code licensed under both GPL and BSD licenses. Website: http://www.cellprofiler.org Copyright (c) 2003-2009 Massachusetts Institute of Technology Copyright (c) 2009-2011 Broad Institute All rights reserved. Original author: Lee Kamentsky

Python source code: image_source_canny.py

import numpy as np
import scipy.ndimage as ndi
from scipy.ndimage import (gaussian_filter, convolve,
generate_binary_structure, binary_erosion, label)
def smooth_with_function_and_mask(image, function, mask):
"""Smooth an image with a linear function, ignoring masked pixels
Parameters
----------
image : array
The image to smooth
function : callable
A function that takes an image and returns a smoothed image
mask : array
Mask with 1's for significant pixels, 0 for masked pixels
Notes
------
This function calculates the fractional contribution of masked pixels
by applying the function to the mask (which gets you the fraction of
the pixel data that's due to significant points). We then mask the image
and apply the function. The resulting values will be lower by the bleed-over
fraction, so you can recalibrate by dividing by the function on the mask
to recover the effect of smoothing from just the significant pixels.
"""
not_mask = np.logical_not(mask)
bleed_over = function(mask.astype(float))
masked_image = np.zeros(image.shape, image.dtype)
masked_image[mask] = image[mask]
smoothed_image = function(masked_image)
output_image = smoothed_image / (bleed_over + np.finfo(float).eps)
return output_image
def canny(image, sigma, low_threshold, high_threshold, mask=None):
'''Edge filter an image using the Canny algorithm.
Parameters
-----------
image : array_like, dtype=float
The greyscale input image to detect edges on; should be normalized to 0.0
to 1.0.
sigma : float
The standard deviation of the Gaussian filter
low_threshold : float
The lower bound for hysterisis thresholding (linking edges)
high_threshold : float
The upper bound for hysterisis thresholding (linking edges)
mask : array, dtype=bool, optional
An optional mask to limit the application of Canny to a certain area.
Returns
-------
output : array (image)
The binary edge map.
References
-----------
Canny, J., A Computational Approach To Edge Detection, IEEE Trans.
Pattern Analysis and Machine Intelligence, 8:679-714, 1986
William Green's Canny tutorial
http://www.pages.drexel.edu/~weg22/can_tut.html
'''
#
# The steps involved:
#
# * Smooth using the Gaussian with sigma above.
#
# * Apply the horizontal and vertical Sobel operators to get the gradients
# within the image. The edge strength is the sum of the magnitudes
# of the gradients in each direction.
#
# * Find the normal to the edge at each point using the arctangent of the
# ratio of the Y sobel over the X sobel - pragmatically, we can
# look at the signs of X and Y and the relative magnitude of X vs Y
# to sort the points into 4 categories: horizontal, vertical,
# diagonal and antidiagonal.
#
# * Look in the normal and reverse directions to see if the values
# in either of those directions are greater than the point in question.
# Use interpolation to get a mix of points instead of picking the one
# that's the closest to the normal.
#
# * Label all points above the high threshold as edges.
# * Recursively label any point above the low threshold that is 8-connected
# to a labeled point as an edge.
#
# Regarding masks, any point touching a masked point will have a gradient
# that is "infected" by the masked point, so it's enough to erode the
# mask by one and then mask the output. We also mask out the border points
# because who knows what lies beyond the edge of the image?
#
if mask is None:
mask = np.ones(image.shape, dtype=bool)
fsmooth = lambda x: gaussian_filter(x, sigma, mode='constant')
smoothed = smooth_with_function_and_mask(image, fsmooth, mask)
jsobel = ndi.sobel(smoothed, axis=1)
isobel = ndi.sobel(smoothed, axis=0)
abs_isobel = np.abs(isobel)
abs_jsobel = np.abs(jsobel)
magnitude = np.hypot(isobel, jsobel)
#
# Make the eroded mask. Setting the border value to zero will wipe
# out the image edges for us.
#
s = generate_binary_structure(2, 2)
eroded_mask = binary_erosion(mask, s, border_value=0)
eroded_mask = eroded_mask & (magnitude > 0)
#
#--------- Find local maxima --------------
#
# Assign each point to have a normal of 0-45 degrees, 45-90 degrees,
# 90-135 degrees and 135-180 degrees.
#
local_maxima = np.zeros(image.shape,bool)
#----- 0 to 45 degrees ------
pts_plus = (isobel >= 0) & (jsobel >= 0) & (abs_isobel >= abs_jsobel)
pts_minus = (isobel <= 0) & (jsobel <= 0) & (abs_isobel >= abs_jsobel)
pts = pts_plus | pts_minus
pts = eroded_mask & pts
# Get the magnitudes shifted left to make a matrix of the points to the
# right of pts. Similarly, shift left and down to get the points to the
# top right of pts.
c1 = magnitude[1:, :][pts[:-1, :]]
c2 = magnitude[1:, 1:][pts[:-1, :-1]]
m = magnitude[pts]
w = abs_jsobel[pts] / abs_isobel[pts]
c_plus = c2 * w + c1 * (1 - w) <= m
c1 = magnitude[:-1, :][pts[1:, :]]
c2 = magnitude[:-1, :-1][pts[1:, 1:]]
c_minus = c2 * w + c1 * (1 - w) <= m
local_maxima[pts] = c_plus & c_minus
#----- 45 to 90 degrees ------
# Mix diagonal and vertical
#
pts_plus = (isobel >= 0) & (jsobel >= 0) & (abs_isobel <= abs_jsobel)
pts_minus = (isobel <= 0) & (jsobel <= 0) & (abs_isobel <= abs_jsobel)
pts = pts_plus | pts_minus
pts = eroded_mask & pts
c1 = magnitude[:, 1:][pts[:, :-1]]
c2 = magnitude[1:, 1:][pts[:-1, :-1]]
m = magnitude[pts]
w = abs_isobel[pts] / abs_jsobel[pts]
c_plus = c2 * w + c1 * (1 - w) <= m
c1 = magnitude[:, :-1][pts[:, 1:]]
c2 = magnitude[:-1, :-1][pts[1:, 1:]]
c_minus = c2 * w + c1 * (1 - w) <= m
local_maxima[pts] = c_plus & c_minus
#----- 90 to 135 degrees ------
# Mix anti-diagonal and vertical
#
pts_plus = (isobel <= 0) & (jsobel >= 0) & (abs_isobel <= abs_jsobel)
pts_minus = (isobel >= 0) & (jsobel <= 0) & (abs_isobel <= abs_jsobel)
pts = pts_plus | pts_minus
pts = eroded_mask & pts
c1a = magnitude[:, 1:][pts[:, :-1]]
c2a = magnitude[:-1, 1:][pts[1:, :-1]]
m = magnitude[pts]
w = abs_isobel[pts] / abs_jsobel[pts]
c_plus = c2a * w + c1a * (1.0 - w) <= m
c1 = magnitude[:, :-1][pts[:, 1:]]
c2 = magnitude[1:, :-1][pts[:-1, 1:]]
c_minus = c2 * w + c1 * (1.0 - w) <= m
cc = np.logical_and(c_plus,c_minus)
local_maxima[pts] = c_plus & c_minus
#----- 135 to 180 degrees ------
# Mix anti-diagonal and anti-horizontal
#
pts_plus = (isobel <= 0) & (jsobel >= 0) & (abs_isobel >= abs_jsobel)
pts_minus = (isobel >= 0) & (jsobel <= 0) & (abs_isobel >= abs_jsobel)
pts = pts_plus | pts_minus
pts = eroded_mask & pts
c1 = magnitude[:-1, :][pts[1:, :]]
c2 = magnitude[:-1, 1:][pts[1:, :-1]]
m = magnitude[pts]
w = abs_jsobel[pts] / abs_isobel[pts]
c_plus = c2 * w + c1 * (1 - w) <= m
c1 = magnitude[1:, :][pts[:-1, :]]
c2 = magnitude[1:,:-1][pts[:-1,1:]]
c_minus = c2 * w + c1 * (1 - w) <= m
local_maxima[pts] = c_plus & c_minus
#
#---- Create two masks at the two thresholds.
#
high_mask = local_maxima & (magnitude >= high_threshold)
low_mask = local_maxima & (magnitude >= low_threshold)
#
# Segment the low-mask, then only keep low-segments that have
# some high_mask component in them
#
labels,count = label(low_mask, np.ndarray((3, 3),bool))
if count == 0:
return low_mask
sums = (np.array(ndi.sum(high_mask,labels,
np.arange(count,dtype=np.int32) + 1),
copy=False, ndmin=1))
good_label = np.zeros((count + 1,),bool)
good_label[1:] = sums > 0
output_mask = good_label[labels]
return output_mask